Equational bases for weak monounary varieties
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 87-100

Voir la notice de l'article provenant de la source Library of Science

It is well-known that every monounary variety of total algebras has one-element equational basis (see [5]). In my paper I prove that every monounary weak variety has at most 3-element equational basis. I give an example of monounary weak variety having 3-element equational basis, which has no 2-element equational basis.
Keywords: partial algebra, weak equation, weak variety, regular equation, regular weak equational theory, monounary algebras
@article{DMGAA_2002_22_1_a6,
     author = {Bi\'nczak, Grzegorz},
     title = {Equational bases for weak monounary varieties},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/}
}
TY  - JOUR
AU  - Bińczak, Grzegorz
TI  - Equational bases for weak monounary varieties
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 87
EP  - 100
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/
LA  - en
ID  - DMGAA_2002_22_1_a6
ER  - 
%0 Journal Article
%A Bińczak, Grzegorz
%T Equational bases for weak monounary varieties
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 87-100
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/
%G en
%F DMGAA_2002_22_1_a6
Bińczak, Grzegorz. Equational bases for weak monounary varieties. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/