Equational bases for weak monounary varieties
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 87-100.

Voir la notice de l'article provenant de la source Library of Science

It is well-known that every monounary variety of total algebras has one-element equational basis (see [5]). In my paper I prove that every monounary weak variety has at most 3-element equational basis. I give an example of monounary weak variety having 3-element equational basis, which has no 2-element equational basis.
Keywords: partial algebra, weak equation, weak variety, regular equation, regular weak equational theory, monounary algebras
@article{DMGAA_2002_22_1_a6,
     author = {Bi\'nczak, Grzegorz},
     title = {Equational bases for weak monounary varieties},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/}
}
TY  - JOUR
AU  - Bińczak, Grzegorz
TI  - Equational bases for weak monounary varieties
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 87
EP  - 100
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/
LA  - en
ID  - DMGAA_2002_22_1_a6
ER  - 
%0 Journal Article
%A Bińczak, Grzegorz
%T Equational bases for weak monounary varieties
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 87-100
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/
%G en
%F DMGAA_2002_22_1_a6
Bińczak, Grzegorz. Equational bases for weak monounary varieties. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/

[1] G. Bińczak, A characterization theorem for weak varieties, Algebra Universalis 45 (2001), 53-62.

[2] P. Burmeister, A Model - Theoretic Oriented Approach to Partial Algebras, Akademie-Verlag, Berlin 1986.

[3] G. Grätzer, Universal Algebra, (the second edition), Springer-Verlag, New York 1979.

[4] H. Höft, Weak and strong equations in partial algebras, Algebra Universalis 3 (1973), 203-215.

[5] E. Jacobs and R. Schwabauer, The lattice of equational classes of algebras with one unary operation, Amer. Math. Monthly 71 (1964), 151-155.

[6] L. Rudak, A completness theorem for weak equational logic, Algebra Universalis 16 (1983), 331-337.

[7] L. Rudak, Algebraic characterization of conflict-free varieties of partial algebras, Algebra Universalis 30 (1993), 89-100.