Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2002_22_1_a6, author = {Bi\'nczak, Grzegorz}, title = {Equational bases for weak monounary varieties}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {87--100}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/} }
Bińczak, Grzegorz. Equational bases for weak monounary varieties. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 87-100. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a6/
[1] G. Bińczak, A characterization theorem for weak varieties, Algebra Universalis 45 (2001), 53-62.
[2] P. Burmeister, A Model - Theoretic Oriented Approach to Partial Algebras, Akademie-Verlag, Berlin 1986.
[3] G. Grätzer, Universal Algebra, (the second edition), Springer-Verlag, New York 1979.
[4] H. Höft, Weak and strong equations in partial algebras, Algebra Universalis 3 (1973), 203-215.
[5] E. Jacobs and R. Schwabauer, The lattice of equational classes of algebras with one unary operation, Amer. Math. Monthly 71 (1964), 151-155.
[6] L. Rudak, A completness theorem for weak equational logic, Algebra Universalis 16 (1983), 331-337.
[7] L. Rudak, Algebraic characterization of conflict-free varieties of partial algebras, Algebra Universalis 30 (1993), 89-100.