On some finite groupoids with distributive subgroupoid lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 25-31.

Voir la notice de l'article provenant de la source Library of Science

The aim of the paper is to show that if S(G) is distributive, and also G satisfies some additional condition, then the union of any two subgroupoids of G is also a subgroupoid (intuitively, G has to be in some sense a unary algebra).
Keywords: groupoid, subgroupoid lattice, distributive lattice
@article{DMGAA_2002_22_1_a1,
     author = {Pi\'oro, Konrad},
     title = {On some finite groupoids with distributive subgroupoid lattices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a1/}
}
TY  - JOUR
AU  - Pióro, Konrad
TI  - On some finite groupoids with distributive subgroupoid lattices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2002
SP  - 25
EP  - 31
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a1/
LA  - en
ID  - DMGAA_2002_22_1_a1
ER  - 
%0 Journal Article
%A Pióro, Konrad
%T On some finite groupoids with distributive subgroupoid lattices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2002
%P 25-31
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a1/
%G en
%F DMGAA_2002_22_1_a1
Pióro, Konrad. On some finite groupoids with distributive subgroupoid lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a1/

[1] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin 1978.

[2] T. Evans and B. Ganter, Varieties with modular subalgebra lattices, Bull. Austr. Math. Soc. 28 (1983), 247-254.

[3] E.W. Kiss and M.A. Valeriote, Abelian algebras and the Hamiltonian property, J. Pure Appl. Algebra 87 (1993), 37-49.

[4] P.P. Pálfy, Modular subalgebra lattices, Algebra Universalis 27 (1990), 220-229.

[5] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math. 14 (1962), 451-460.