On some finite groupoids with distributive subgroupoid lattices
Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 25-31
Cet article a éte moissonné depuis la source Library of Science
The aim of the paper is to show that if S(G) is distributive, and also G satisfies some additional condition, then the union of any two subgroupoids of G is also a subgroupoid (intuitively, G has to be in some sense a unary algebra).
Keywords:
groupoid, subgroupoid lattice, distributive lattice
@article{DMGAA_2002_22_1_a1,
author = {Pi\'oro, Konrad},
title = {On some finite groupoids with distributive subgroupoid lattices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {25--31},
year = {2002},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a1/}
}
Pióro, Konrad. On some finite groupoids with distributive subgroupoid lattices. Discussiones Mathematicae. General Algebra and Applications, Tome 22 (2002) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/DMGAA_2002_22_1_a1/
[1] G. Grätzer, General Lattice Theory, Akademie-Verlag, Berlin 1978.
[2] T. Evans and B. Ganter, Varieties with modular subalgebra lattices, Bull. Austr. Math. Soc. 28 (1983), 247-254.
[3] E.W. Kiss and M.A. Valeriote, Abelian algebras and the Hamiltonian property, J. Pure Appl. Algebra 87 (1993), 37-49.
[4] P.P. Pálfy, Modular subalgebra lattices, Algebra Universalis 27 (1990), 220-229.
[5] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math. 14 (1962), 451-460.