The lattice of subvarieties of the biregularization of the variety of Boolean algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 255-268

Voir la notice de l'article provenant de la source Library of Science

Let τ: F → N be a type of algebras, where F is a set of fundamental operation symbols and N is the set of all positive integers. An identity φ ≈ ψ is called biregular if it has the same variables in each of it sides and it has the same fundamental operation symbols in each of it sides. For a variety V of type τ we denote by V_b the biregularization of V, i.e. the variety of type τ defined by all biregular identities from Id(V).
Keywords: subdirectly irreducible algebra, lattice of subvarieties, Boolean algebra, biregular identity
@article{DMGAA_2001_21_2_a9,
     author = {P{\l}onka, Jerzy},
     title = {The lattice of subvarieties of the biregularization of the variety of {Boolean} algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {255--268},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/}
}
TY  - JOUR
AU  - Płonka, Jerzy
TI  - The lattice of subvarieties of the biregularization of the variety of Boolean algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 255
EP  - 268
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/
LA  - en
ID  - DMGAA_2001_21_2_a9
ER  - 
%0 Journal Article
%A Płonka, Jerzy
%T The lattice of subvarieties of the biregularization of the variety of Boolean algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 255-268
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/
%G en
%F DMGAA_2001_21_2_a9
Płonka, Jerzy. The lattice of subvarieties of the biregularization of the variety of Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 255-268. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/