Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2001_21_2_a9, author = {P{\l}onka, Jerzy}, title = {The lattice of subvarieties of the biregularization of the variety of {Boolean} algebras}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {255--268}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/} }
TY - JOUR AU - Płonka, Jerzy TI - The lattice of subvarieties of the biregularization of the variety of Boolean algebras JO - Discussiones Mathematicae. General Algebra and Applications PY - 2001 SP - 255 EP - 268 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/ LA - en ID - DMGAA_2001_21_2_a9 ER -
%0 Journal Article %A Płonka, Jerzy %T The lattice of subvarieties of the biregularization of the variety of Boolean algebras %J Discussiones Mathematicae. General Algebra and Applications %D 2001 %P 255-268 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/ %G en %F DMGAA_2001_21_2_a9
Płonka, Jerzy. The lattice of subvarieties of the biregularization of the variety of Boolean algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 2, pp. 255-268. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_2_a9/
[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York-Heidelberg-Berlin 1981.
[2] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327-335.
[3] I. Chajda and K. Gazek, A Basic Course on General Algebra, TechnicalUniversity Press, Zielona Góra 2000.
[4] G. Grätzer, Universal Algebra (2nd edition), Springer-Verlag, New York-Heidelberg-Berlin 1979.
[5] B. Jónsson and E. Nelson, Relatively free products in regular varieties, Algebra Universalis 4 (1974), 14-19.
[6] H. Lakser, R. Padmanabhan and C.R. Platt, Subdirect decomposition of Płonka sums, Duke Math. J. 39 (1972), 485-488.
[7] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, vol. 1, Wadsworth Brooks/Cole Advanced Books Software, Monterey, California 1987.
[8] J. Płonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967), 183-189.
[9] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247.
[10] J. Płonka, Biregular and uniform identities of bisemilattices, Demonstratio Math. 20 (1987), 95-107.
[11] J. Płonka, On varieties of algebras defined by identities of some special forms, Houston J. Math. 14 (1988), 253-263.
[12] J. Płonka, Biregular and uniform identities of algebras, Czechoslovak Math. J. 40 (115) (1990), 367-387.
[13] J. Płonka, Subdirect decompositions of algebras from 2-clone extension of varieties, Colloq. Math 77 (1998), 189-199.
[14] J. Płonka, On n-clone extensions of algebras, Algebra Universalis 40 (1998), 1-17.
[15] J. Płonka, Free algebras over biregularization of varieties, Acta Appl. Math. 52 (1998), 305-313.
[16] J. Płonka, On sums of direct systems of Boolean algebras, Colloq. Math. 20 (1969), 209-214.
[17] J. Płonka, Lattices of subvarieties of the clone extension of some varieties, Contributions to General Algebra 11 (1999), 161-171.
[18] J. Płonka, Clone networks, clone extensions and biregularizations of varieties of algebras, Algebra Colloq. 8 (2001), 327-344.
[19] J. Płonka. and Z. Szylicka, Subdirectly irreducible generalized sums of upper semilattice ordered systems of algebras, Algebra Universalis (in print).