Balanced congruences
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 105-114.

Voir la notice de l'article provenant de la source Library of Science

Let V be a variety with two distinct nullary operations 0 and 1. An algebra ∈ V is called balanced if for each Φ,Ψ ∈ Con(), we have [0]Φ = [0]Ψ if and only if [1]Φ = [1]Ψ. The variety V is called balanced if every ∈ V is balanced. In this paper, balanced varieties are characterized by a Mal'cev condition (Theorem 3). Furthermore, some special results are given for varieties of bounded lattices.
Keywords: balanced congruence, balanced algebra, balanced variety, Mal'cev condition
@article{DMGAA_2001_21_1_a9,
     author = {Chajda, Ivan and Eigenthaler, G\"unther},
     title = {Balanced congruences},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a9/}
}
TY  - JOUR
AU  - Chajda, Ivan
AU  - Eigenthaler, Günther
TI  - Balanced congruences
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 105
EP  - 114
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a9/
LA  - en
ID  - DMGAA_2001_21_1_a9
ER  - 
%0 Journal Article
%A Chajda, Ivan
%A Eigenthaler, Günther
%T Balanced congruences
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 105-114
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a9/
%G en
%F DMGAA_2001_21_1_a9
Chajda, Ivan; Eigenthaler, Günther. Balanced congruences. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a9/

[1] I. Chajda, Locally regular varieties, Acta Sci. Math. (Szeged) 64 (1998), 431-435.

[2] I. Chajda and G. Eigenthaler, A remark on congruence kernels in complemented lattices and pseudocomplemented semilattices, Contributions to General Algebra 11 (1999), 55-58.

[3] G. Grätzer and E.T. Schmidt, Ideals and congruence relations in lattices, Acta Math. Sci. Hungar. 9 (1958), 137-175.

[4] A.I. Mal'cev, On the general theory of algebraic systems (Russian), Mat. Sb. 35 (1954), 3-20.