On distributive trices
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 21-29.

Voir la notice de l'article provenant de la source Library of Science

A triple-semilattice is an algebra with three binary operations, which is a semilattice in respect of each of them. A trice is a triple-semilattice, satisfying so called roundabout absorption laws. In this paper we investigate distributive trices. We prove that the only subdirectly irreducible distributive trices are the trivial one and a two element one. We also discuss finitely generated free distributive trices and prove that a free distributive trice with two generators has 18 elements.
Keywords: triple semilattice, trice, distributive trice
@article{DMGAA_2001_21_1_a2,
     author = {Horiuchi, Kiyomitsu and Tepav\v{c}evi\'c, Andreja},
     title = {On distributive trices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a2/}
}
TY  - JOUR
AU  - Horiuchi, Kiyomitsu
AU  - Tepavčević, Andreja
TI  - On distributive trices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 21
EP  - 29
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a2/
LA  - en
ID  - DMGAA_2001_21_1_a2
ER  - 
%0 Journal Article
%A Horiuchi, Kiyomitsu
%A Tepavčević, Andreja
%T On distributive trices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 21-29
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a2/
%G en
%F DMGAA_2001_21_1_a2
Horiuchi, Kiyomitsu; Tepavčević, Andreja. On distributive trices. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a2/

[1] S. Burris, and H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York 1981 (new, electronic version, 1999: is available at the address: www.thoralf.uwaterloo.ca).

[2] K. Horiuchi, Trice and Two delegates operation, Sci. Math. 2 (1999), 373-384.

[3] J.A. Kalman, Subdirect decomposition of distributive quasi-lattices, Fund. Math. 71 (1971), 161-163.