The Słupecki criterion by duality
Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Library of Science

A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of A^k only. We show how the method applies for proving Słupecki's classical theorem by generating diagonal relations from each pair of k-tuples.
Keywords: primal algebra, diagonal relation, Galois connection, Słupecki Criterion
@article{DMGAA_2001_21_1_a0,
     author = {Horv\'ath, Eszter},
     title = {The {S{\l}upecki} criterion by duality},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a0/}
}
TY  - JOUR
AU  - Horváth, Eszter
TI  - The Słupecki criterion by duality
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2001
SP  - 5
EP  - 11
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a0/
LA  - en
ID  - DMGAA_2001_21_1_a0
ER  - 
%0 Journal Article
%A Horváth, Eszter
%T The Słupecki criterion by duality
%J Discussiones Mathematicae. General Algebra and Applications
%D 2001
%P 5-11
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a0/
%G en
%F DMGAA_2001_21_1_a0
Horváth, Eszter. The Słupecki criterion by duality. Discussiones Mathematicae. General Algebra and Applications, Tome 21 (2001) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGAA_2001_21_1_a0/

[1] K.A. Baker and A.F. Pixley, Polynomial Interpolation and the Chinese Remainder Theorem for Algebraic Systems, Math. Z. 143 (1975), 165-174.

[2] V.G. Bodnarcuk, L.A. Kaluznin, V.N. Kotov, and B.A. Romov, Galois theory for Post algebras, I and II (Russian), Kibernetika (Kiev) 5 (1969), no. 3 p. 1-10 and no. 5, p. 1-9.

[3] B. Csákány, Homogeneous algebras are functionally complete, AlgebraUniversalis 11 (1980), 149-158.

[4] A.L. Foster, An existence theorem for functionally complete universalalgebras, Math. Z. 71 (1959), 69-82.

[5] E. Fried and A.F. Pixley, The dual discriminator function in universalalgebra, Acta Sci. Math. (Szeged) 41 (1979), 83-100.

[6] D. Geiger, Closed systems of functions and predicates, Pacific J. Math. 27 (1968), 95-100.

[7] Th. Ihringer, Allgemeine Algebra, Teubner-Verlag, Stuttgart 1993.

[8] S.W. Jablonski and O.B. Lupanow, (eds.), Diskrete Mathematik und mathematische Fragen der Kybernetik, Akademie-Verlag, Berlin 1980.

[9] P.H. Krauss, On primal algebras, Algebra Universalis 2 (1972), 62-67.

[10] P.H. Krauss, On quasi primal algebras, Math. Z. 134 (1973), 85-89.

[11] R. Pöschel and L.A. Kaluznin, Funktionen- und Relationenalgebren, Deutschen Verlag der Wissenschaften, Berlin 1979.

[12] W. Sierpiński, Sur les fonctions de plusieurs variables, Fund. Math. 33 (1945), 169-173.

[13] J. Słupecki, Completeness criterion for systems of many-valued propositional calculus (in Polish), C.R. des Séances de la Societé des Sciences et des Lettres de Varsovie Cl. II 32 (1939), 102-109., (English transl.: Studia Logica 30 (972), 153-157.

[14] Á. Szendrei, Clones in Universal Algebra, Les Presses de l'Université de Montréal, Montreal 1986.

[15] H. Werner, Discriminator-Algebras, Akademie-Verlag, Berlin 1978.

[16] H. Werner, Eine Characterisierung funktional vollstandiger Algebren, Arch. Math. (Basel) 21 (1970), 381-385.

[17] S.V. Yablonski, Functional construction in the k-valued logic (Russian), Trudy Math. Inst. Steklov 51 (1958), 5-142.