Diophantine equations and class number of imaginary quadratic fields
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 199-206
Voir la notice de l'article provenant de la source Library of Science
Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μ_i ∈ -1,1(i = 1,2), and let h(-2^1-eD)(e = 0 or 1) denote the class number of the imaginary quadratic field ℚ(√(-2^1-eD)). In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h(-2^1-eD) ≡ 0 (mod n), where D, and n satisfy kⁿ - 2^e+1 = Dx², x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.
Keywords:
Diophantine equation, imaginary quadratic field, class number, cryptographic problem
@article{DMGAA_2000_20_2_a4,
author = {Cao, Zhenfu and Dong, Xiaolei},
title = {Diophantine equations and class number of imaginary quadratic fields},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {199--206},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/}
}
TY - JOUR AU - Cao, Zhenfu AU - Dong, Xiaolei TI - Diophantine equations and class number of imaginary quadratic fields JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 199 EP - 206 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/ LA - en ID - DMGAA_2000_20_2_a4 ER -
%0 Journal Article %A Cao, Zhenfu %A Dong, Xiaolei %T Diophantine equations and class number of imaginary quadratic fields %J Discussiones Mathematicae. General Algebra and Applications %D 2000 %P 199-206 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/ %G en %F DMGAA_2000_20_2_a4
Cao, Zhenfu; Dong, Xiaolei. Diophantine equations and class number of imaginary quadratic fields. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 199-206. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/