Voir la notice de l'article provenant de la source Library of Science
@article{DMGAA_2000_20_2_a4, author = {Cao, Zhenfu and Dong, Xiaolei}, title = {Diophantine equations and class number of imaginary quadratic fields}, journal = {Discussiones Mathematicae. General Algebra and Applications}, pages = {199--206}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/} }
TY - JOUR AU - Cao, Zhenfu AU - Dong, Xiaolei TI - Diophantine equations and class number of imaginary quadratic fields JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 199 EP - 206 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/ LA - en ID - DMGAA_2000_20_2_a4 ER -
%0 Journal Article %A Cao, Zhenfu %A Dong, Xiaolei %T Diophantine equations and class number of imaginary quadratic fields %J Discussiones Mathematicae. General Algebra and Applications %D 2000 %P 199-206 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/ %G en %F DMGAA_2000_20_2_a4
Cao, Zhenfu; Dong, Xiaolei. Diophantine equations and class number of imaginary quadratic fields. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 199-206. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a4/
[1] J. Buchmann and H.C. Williams, Quadratic fields and cryptography, 'Number Theory and Cryptography', University Press, Cambridge 1990, 9-25.
[2] Z. Cao, An Erdös conjecture, Pell sequences and Diophantine equations(Chinese), J. Harbin Inst. Tech. 2 (1987), 122-124.
[3] Z. Cao, On the equation $Dx² ± 1 = y^{p}$, xy ≠ 0 (Chinese), J. Math. Res. Exposition 7 (1987), no. 3, 414.
[4] Z. Cao, On the equation $ax^{m}-byⁿ = 2$ (Chinese), Chinese Sci. Bull. 35 (1990), 558-559.
[5] Z. Cao, On the Diophantine equation $(ax^{m}-4c)/(abx-4c) = by²$ (Chinese), J. Harbin Inst. Tech. 23 (1991), Special Issue, 110-112.
[6] Z. Cao, The Diophantine equation $cx⁴+dy⁴ = z^{p}$, C.R. Math. Rep. Acad. Sci. Canada 14 (1992), 231-234.
[7] Z. Cao and A. Grytczuk, Some classes of Diophantine equations connected with McFarland's and Ma's conjectures, Discuss. Math. - Algebra and Applications 2 (2000), 193-198.
[8] G. Degert, Über die Bestimung der Grundeinheit gewisser reell-quadratischer Zahlkorper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97.
[9] K. Inkeri, On the diophantine equations $2y² = 7^{k}+1$ and x² + 11 = 3ⁿ, Elem. Math. 34 (1979), 119-121.
[10] V.A. Lebesgue, Sur l'impossibilitéon nombres entiers de l'équation $x^{m} = y²+1$, Nouv. Ann. Math. 9 (1850), no. 1, p. 178-181.
[11] W. Ljunggren, Über die Gleichungen 1 + Dx² = 2yⁿ und 1 + Dx² = 4yⁿ, Norske Vid. Selsk. Forhandl. 15 (30) (1942), 115-118.
[12] R.A. Mollin, Solutions of Diophantine equations and divisibility of class numbers of complex quadratic fields, Glasgow Math. J. 38 (1996), 195-197.
[13] T. Nagell, Sur l'impossibilité de quelques équations a deux indéterminées, Norsk Matem. Forenings Skr. Serie I 13 (1923), 65-82.
[14] C. Richaud, Sur la résolution des équations x² - Ay² = ±1, Atti Acad. Pontif. Nuovi Lincei (1866), 177-182.
[15] C. Størmer, Solution compléte en nombres entiers m, n,x, y, k de l'équation marctg 1/x + narctg1/y = kπ/4, Christiania Vid. Selsk. Skr. I, 11 (1895).
[16] D.T. Walker, On the Diophantina equation mx² - ny² = ±1, Amer. Math. Monthly 74 (1967), 504-513.