Hyperidentities in associative graph algebras
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 169-182.

Voir la notice de l'article provenant de la source Library of Science

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies an identity s ≈ t if the correspondinggraph algebra A(G) satisfies s ≈ t. A graph G is called associative if the corresponding graph algebra A(G) satisfies the equation (xy)z ≈ x(yz). An identity s ≈ t of terms s and t of any type τ is called a hyperidentity of an algebra A̲ if whenever the operation symbols occurring in s and t are replaced by any term operations of A of the appropriate arity, the resulting identities hold in A.
Keywords: identities, hyperidentities, associative graph algebras, terms
@article{DMGAA_2000_20_2_a1,
     author = {Poomsa-ard, Tiang},
     title = {Hyperidentities in associative graph algebras},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {169--182},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a1/}
}
TY  - JOUR
AU  - Poomsa-ard, Tiang
TI  - Hyperidentities in associative graph algebras
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 169
EP  - 182
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a1/
LA  - en
ID  - DMGAA_2000_20_2_a1
ER  - 
%0 Journal Article
%A Poomsa-ard, Tiang
%T Hyperidentities in associative graph algebras
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 169-182
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a1/
%G en
%F DMGAA_2000_20_2_a1
Poomsa-ard, Tiang. Hyperidentities in associative graph algebras. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 2, pp. 169-182. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_2_a1/

[1] K. Denecke and M. Reichel, Monoids of Hypersubstitutions and M-solidvarieties, Contributions to General Algebra 9 (1995), 117-125.

[2] K. Denecke and T. Poomsa-ard, Hyperidentities in graph algebras, 'General Algebra and Aplications in Discrete Mathematics', Shaker-Verlag, Aachen 1997, 59-68.

[3] E.W. Kiss, R. Pöschel, and P. Pröhle, Subvarieties of varieties generated by graph algebras, Acta Sci. Math. (Szeged) 54 (1990), 57-75.

[4] J. Płonka, Hyperidentities in some classes of algebras, preprint, 1993.

[5] J. Płonka, Proper and inner hypersubstitutions of varieties, 'General Algebra nd Ordered Sets', Palacký Univ., Olomouc 1994, 106-116.

[6] R. Pöschel, The equatioal logic for graph algebras, Zeitschr. Math. Logik Grundlag. Math. 35 (1989), 273-282.

[7] R. Pöschel, Graph algebras and graph varieties, Algebra Universalis 27 (1990), 559-577.

[8] C.R. Shallon, Nonfinitely based finite algebras derived from lattices, Ph. D. Disertation, Univ. of California, Los Angeles 1979.