Boolean matrices ... neither Boolean nor matrices
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 141-151
Voir la notice de l'article provenant de la source Library of Science
Boolean matrices, the incidence matrices of a graph, are known not to be the (universal) matrices of a Boolean algebra. Here, we also show that their usual composition cannot make them the matrices of any algebra. Yet, later on, we "show" that it can. This seeming paradox comes from the hidden intrusion of a widespread set-theoretical (mis) definition and notation and denies its harmlessness. A minor modification of this standard definition might fix it.
Keywords:
universal matrix, functional application, generalized matrix, analytic monoid
@article{DMGAA_2000_20_1_a11,
author = {Ricci, Gabriele},
title = {Boolean matrices ... neither {Boolean} nor matrices},
journal = {Discussiones Mathematicae. General Algebra and Applications},
pages = {141--151},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/}
}
TY - JOUR AU - Ricci, Gabriele TI - Boolean matrices ... neither Boolean nor matrices JO - Discussiones Mathematicae. General Algebra and Applications PY - 2000 SP - 141 EP - 151 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/ LA - en ID - DMGAA_2000_20_1_a11 ER -
Ricci, Gabriele. Boolean matrices ... neither Boolean nor matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/