Boolean matrices ... neither Boolean nor matrices
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 141-151

Voir la notice de l'article provenant de la source Library of Science

Boolean matrices, the incidence matrices of a graph, are known not to be the (universal) matrices of a Boolean algebra. Here, we also show that their usual composition cannot make them the matrices of any algebra. Yet, later on, we "show" that it can. This seeming paradox comes from the hidden intrusion of a widespread set-theoretical (mis) definition and notation and denies its harmlessness. A minor modification of this standard definition might fix it.
Keywords: universal matrix, functional application, generalized matrix, analytic monoid
@article{DMGAA_2000_20_1_a11,
     author = {Ricci, Gabriele},
     title = {Boolean matrices ... neither {Boolean} nor matrices},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/}
}
TY  - JOUR
AU  - Ricci, Gabriele
TI  - Boolean matrices ... neither Boolean nor matrices
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 141
EP  - 151
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/
LA  - en
ID  - DMGAA_2000_20_1_a11
ER  - 
%0 Journal Article
%A Ricci, Gabriele
%T Boolean matrices ... neither Boolean nor matrices
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 141-151
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/
%G en
%F DMGAA_2000_20_1_a11
Ricci, Gabriele. Boolean matrices ... neither Boolean nor matrices. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 141-151. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a11/