Equivalent conditions for p-nilpotence
Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 129-139.

Voir la notice de l'article provenant de la source Library of Science

In the first part of this paper we prove without using the transfer or characters the equivalence of some conditions, each of which would imply p-nilpotence of a finite group G. The implication of p-nilpotence also can be deduced without the transfer or characters if the group is p-constrained. For p-constrained groups we also prove an equivalent condition so that O^q'(G)P should be p-nilpotent. We show an example that this result is not true for some non-p-constrained groups.
Keywords: p-nilpotent group, p-constrained group, character of a group, Schmidt group, Thompson-ordering, Sylow p-group
@article{DMGAA_2000_20_1_a10,
     author = {Corr\'adi, Kereszt\'ely and Horv\'ath, Erzs\'ebet},
     title = {Equivalent conditions for p-nilpotence},
     journal = {Discussiones Mathematicae. General Algebra and Applications},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a10/}
}
TY  - JOUR
AU  - Corrádi, Keresztély
AU  - Horváth, Erzsébet
TI  - Equivalent conditions for p-nilpotence
JO  - Discussiones Mathematicae. General Algebra and Applications
PY  - 2000
SP  - 129
EP  - 139
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a10/
LA  - en
ID  - DMGAA_2000_20_1_a10
ER  - 
%0 Journal Article
%A Corrádi, Keresztély
%A Horváth, Erzsébet
%T Equivalent conditions for p-nilpotence
%J Discussiones Mathematicae. General Algebra and Applications
%D 2000
%P 129-139
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a10/
%G en
%F DMGAA_2000_20_1_a10
Corrádi, Keresztély; Horváth, Erzsébet. Equivalent conditions for p-nilpotence. Discussiones Mathematicae. General Algebra and Applications, Tome 20 (2000) no. 1, pp. 129-139. http://geodesic.mathdoc.fr/item/DMGAA_2000_20_1_a10/

[1] J.L. Alperin, Centralizers of abelian normal subgroups of p-groups, J. Algebra 1 (1964), 110-113.

[2] K. Corrádi, On certain properties of centralizers hereditary to the factor group, Publ. Math. (Debrecen) 37 (1990), 203-206.

[3] K. Corrádi and E. Horváth, Steps towards an elementary proof of Frobenius' theorem, Comm. Algebra 24 (1996), 2285-2292.

[4] K. Corrádi and E. Horváth, Normal π-complement theorems, Arch. Math. (Basel) 71 (1998), 262-269.

[5] D. Gorenstein, 'Finite groups', Chelsea Publ. Comp., New York 1980.

[6] B. Huppert, 'Endliche Gruppen', Springer-Verlag, Berlin 1967.

[7] I.M. Isaacs, 'Character theory of finite groups', Dover Publ., Inc., New York 1994.

[8] N. Itô, On a theorem of H.F. Blichfeldt, Nagoya Math. J. 5 (1953), 75-77.