Existence of solutions for a second order problem on the half-line via Ekeland's variational principle
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 2, pp. 131-140.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study the existence of nontrivial solutions for a nonlinear boundary value problem posed on the half-line. Our approach is based on Ekeland’s variational principle.
Keywords: Ekeland’s variational principle, critical point
@article{DMDICO_2016_36_2_a0,
     author = {Bouafia, D. and Moussaoui, T. and O{\textquoteright}Regan, O{\textquoteright}Regan},
     title = {Existence of solutions for a second order problem on the half-line via {Ekeland's} variational principle},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {131--140},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/}
}
TY  - JOUR
AU  - Bouafia, D.
AU  - Moussaoui, T.
AU  - O’Regan, O’Regan
TI  - Existence of solutions for a second order problem on the half-line via Ekeland's variational principle
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2016
SP  - 131
EP  - 140
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/
LA  - en
ID  - DMDICO_2016_36_2_a0
ER  - 
%0 Journal Article
%A Bouafia, D.
%A Moussaoui, T.
%A O’Regan, O’Regan
%T Existence of solutions for a second order problem on the half-line via Ekeland's variational principle
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2016
%P 131-140
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/
%G en
%F DMDICO_2016_36_2_a0
Bouafia, D.; Moussaoui, T.; O’Regan, O’Regan. Existence of solutions for a second order problem on the half-line via Ekeland's variational principle. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 2, pp. 131-140. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/

[1] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners (Universitext, Springer, London, 2011) x+199 pp.

[2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, 2010). doi: 10.1007/978-0-387-70914-7

[3] H. Chen, Z. He and J. Li, Multiplicity of solutions for impulsive differential equation on the half-line via variational methods, Bound. Value Probl. 14 (2016). doi: 10.1186/s13661-016-0524-8

[4] B. Dai and D. Zhang, The Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Results. Math. 63 (2013), 135-149. doi: 10.1007/s00025-011-0178-x

[5] S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theory Differ. Equ. (4) (2006), 1-19. doi: 10.14232/ejqtde.2006.1.4

[6] S. Djebali, O. Saifi and S. Zahar, Singular boundary value problems with variable coefficients on the positive half-line, Electron. J. Differential Equations 2013 (73) (2013), 1-18.

[7] S. Djebali, O. Saifi and S. Zahar, Upper and lower solutions for BVPs on the half-line with variable coefficient and derivative depending nonlinearity, Electron. J. Qual. Theory Differ. Equ. (14) (2011), 1-18. doi: 10.14232/ejqtde.2011.1.14

[8] S. Djebali and S. Zahar, Bounded solutios for a derivative dependent boundary value problem on the half-line, Dynam. Systems Appl. 19 (2010), 545-556.

[9] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0

[10] O. Frites, T. Moussaoui and D. O'Regan, Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (2015), 395-407.

[11] H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett. 19 (2006), 1000-1006. doi: 10.1016/j.aml.2005.10.018

[12] D. O'Regan, B. Yan and R.P. Agarwal, Nonlinear boundary value problems on semi-infinite intervals using weighted spaces: An upper and lower solution approach, Positivity 11 (2007), 171-189. doi: 10.1007/s11117-006-0050-5

[13] N.S. Papageorgiou and S.K. Yiallourou, Handbook of Applied Analysis (Springer, New-York, 2009).