Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_2_a0, author = {Bouafia, D. and Moussaoui, T. and O{\textquoteright}Regan, O{\textquoteright}Regan}, title = {Existence of solutions for a second order problem on the half-line via {Ekeland's} variational principle}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {131--140}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/} }
TY - JOUR AU - Bouafia, D. AU - Moussaoui, T. AU - O’Regan, O’Regan TI - Existence of solutions for a second order problem on the half-line via Ekeland's variational principle JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 131 EP - 140 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/ LA - en ID - DMDICO_2016_36_2_a0 ER -
%0 Journal Article %A Bouafia, D. %A Moussaoui, T. %A O’Regan, O’Regan %T Existence of solutions for a second order problem on the half-line via Ekeland's variational principle %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 131-140 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/ %G en %F DMDICO_2016_36_2_a0
Bouafia, D.; Moussaoui, T.; O’Regan, O’Regan. Existence of solutions for a second order problem on the half-line via Ekeland's variational principle. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 2, pp. 131-140. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_2_a0/
[1] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners (Universitext, Springer, London, 2011) x+199 pp.
[2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, 2010). doi: 10.1007/978-0-387-70914-7
[3] H. Chen, Z. He and J. Li, Multiplicity of solutions for impulsive differential equation on the half-line via variational methods, Bound. Value Probl. 14 (2016). doi: 10.1186/s13661-016-0524-8
[4] B. Dai and D. Zhang, The Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Results. Math. 63 (2013), 135-149. doi: 10.1007/s00025-011-0178-x
[5] S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theory Differ. Equ. (4) (2006), 1-19. doi: 10.14232/ejqtde.2006.1.4
[6] S. Djebali, O. Saifi and S. Zahar, Singular boundary value problems with variable coefficients on the positive half-line, Electron. J. Differential Equations 2013 (73) (2013), 1-18.
[7] S. Djebali, O. Saifi and S. Zahar, Upper and lower solutions for BVPs on the half-line with variable coefficient and derivative depending nonlinearity, Electron. J. Qual. Theory Differ. Equ. (14) (2011), 1-18. doi: 10.14232/ejqtde.2011.1.14
[8] S. Djebali and S. Zahar, Bounded solutios for a derivative dependent boundary value problem on the half-line, Dynam. Systems Appl. 19 (2010), 545-556.
[9] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0
[10] O. Frites, T. Moussaoui and D. O'Regan, Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (2015), 395-407.
[11] H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett. 19 (2006), 1000-1006. doi: 10.1016/j.aml.2005.10.018
[12] D. O'Regan, B. Yan and R.P. Agarwal, Nonlinear boundary value problems on semi-infinite intervals using weighted spaces: An upper and lower solution approach, Positivity 11 (2007), 171-189. doi: 10.1007/s11117-006-0050-5
[13] N.S. Papageorgiou and S.K. Yiallourou, Handbook of Applied Analysis (Springer, New-York, 2009).