On the uniform convergence of sine, cosine and double sine-cosine series
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 87-116.

Voir la notice de l'article provenant de la source Library of Science

In this paper we define new classes of sequences GM(β,r) and DGM(α,β,γ,r). Using these classes we generalize and extend the P. Kórus results concerning the uniform convergence of sine, cosine and double sine-cosine series, respectively.
Keywords: sine series, cosine series, double sine-cosine series, uniform convergence, generalized monotonicity
@article{DMDICO_2016_36_1_a5,
     author = {Duzinkiewicz, Krzysztof},
     title = {On the uniform convergence of sine, cosine and double sine-cosine series},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {87--116},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a5/}
}
TY  - JOUR
AU  - Duzinkiewicz, Krzysztof
TI  - On the uniform convergence of sine, cosine and double sine-cosine series
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2016
SP  - 87
EP  - 116
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a5/
LA  - en
ID  - DMDICO_2016_36_1_a5
ER  - 
%0 Journal Article
%A Duzinkiewicz, Krzysztof
%T On the uniform convergence of sine, cosine and double sine-cosine series
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2016
%P 87-116
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a5/
%G en
%F DMDICO_2016_36_1_a5
Duzinkiewicz, Krzysztof. On the uniform convergence of sine, cosine and double sine-cosine series. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 87-116. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a5/

[1] T.W. Chaundy and A.E. Jolliffe, The uniform convergence of certain class of trigonometrical series, Proc. London Math. Soc. 15 (1916), 214-216.

[2] K. Duzinkiewicz and B. Szal, On the uniform convergence of double sine series, http://arxiv.org/pdf/1510.06273v1.pdf.

[3] P. Kórus, Remarks on the uniform and L1-convergence of trigonometric series, Acta Math. Hungar. 128 (2010), 369-380. doi: 10.1007/s10474-010-9217-4

[4] P. Kórus, On the uniform convergence of double sine series with generalized monotone coefficients, Periodica Math. Hungar. 63 (2011), 205-214. doi: 10.1007/s10998-011-8205-y

[5] P. Kórus, Uniform convergence of double trigonometric series, Mathematica Bohemica 138 (3) (2013), 225-243.

[6] B. Szal, A new class of numerical sequences and its applications to uniform convergence of sine series, Math. Nachr. 284 (14-15) (2011), 1985-2002.

[7] B. Szal, On L-convergence of trigonometric series, J. Math. Anal. Appl. 373 (2011), 449-463. doi: 10.1016/j.jmaa.2010.08.003

[8] D.S. Yu and S.P. Zhou, A generalization of monotonicity condition and applications, Acta Math. Hungar. 115 (2007), 247-267. doi: 10.1007/s10474-007-5253-0

[9] S.P. Zhou, P. Zhou and D.S. Yu, Ultimate generalization to monotonicity for uniform convergence of trigonometric series, Sci. China Math. 53 (7) (2010), 1853-1862. doi: 10.1007/s11425-010-3138-0

[10] I.E. Žak and A.A. Šneider, Conditions for uniform convergence of double sine series, Izv. Vysš. Učebn. Zaved. Matematika 4 (1966) in Russian, 44-52.