Weakly precompact operators on $C_{b}(X,E)$ with the strict topology
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 65-77.

Voir la notice de l'article provenant de la source Library of Science

Let X be a completely regular Hausdorff space, E and F be Banach spaces. Let C_b(X,E) be the space of all E-valued bounded continuous functions on X, equipped with the strict topology β. We study weakly precompact operators T:C_b(X,E) → F. In particular, we show that if X is a paracompact k-space and E contains no isomorphic copy of l¹, then every strongly bounded operator T:C_b(X,E) → F is weakly precompact.
Keywords: spaces of vector-valued continuous functions, strict topologies, operator measures, strongly bounded operators, weakly precompact operators
@article{DMDICO_2016_36_1_a3,
     author = {Stochmal, Juliusz},
     title = {Weakly precompact operators on $C_{b}(X,E)$ with the strict topology},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/}
}
TY  - JOUR
AU  - Stochmal, Juliusz
TI  - Weakly precompact operators on $C_{b}(X,E)$ with the strict topology
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2016
SP  - 65
EP  - 77
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/
LA  - en
ID  - DMDICO_2016_36_1_a3
ER  - 
%0 Journal Article
%A Stochmal, Juliusz
%T Weakly precompact operators on $C_{b}(X,E)$ with the strict topology
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2016
%P 65-77
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/
%G en
%F DMDICO_2016_36_1_a3
Stochmal, Juliusz. Weakly precompact operators on $C_{b}(X,E)$ with the strict topology. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/

[1] C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 467-476.

[2] C. Abbott, A. Bator, R. Bilyeu and P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Camb. Phil. Soc. 108 (1990), 325-335. doi: 10.1017/S030500410006919X

[3] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992), 99-103. doi: 10.1002/mana.19921570109

[4] J. Bourgain, An averaging result for l₁-sequences and application to weakly conditionallycompact sets in L₁^X, Israel J. Math. 32 (1979), 289-298. doi: 10.1007/BF02760458

[5] A. Bouziad, Luzin measurability of Carath´eodory type mappings, Topology Appl. 154 (2007), 287-301. doi: 10.1016/j.topol.2006.04.013

[6] J.B. Cooper, The strict topology and spaces with mixed topology, Proc. Amer. Math. Soc. 30 (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2

[7] J. Diestel, Sequences and Series in Banach Spaces (Graduate Texts in Math., vol. 92, Springer-Verlag, 1984).

[8] J. Diestel and J.J. Uhl, Vector Measures (Amer. Math. Soc. Surveys 15, 1977).

[9] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4

[10] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces (John Wiley and Sons Inc., 2000). doi: 10.1002/9781118033012

[11] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).

[12] I. Ghenciu, Weak precompactness in the space of vector-valued measures of bounded variation, J. Function Spaces 2015 (2015), ID 213679.

[13] I. Ghenciu and P. Lewis, Strongly bounded representing measures and converging theorems, Glasgow Math. J. 52 (2010), 435-445. doi: 10.1017/S0017089510000133

[14] L.V. Kantorovitch and G.P. Akilov, Functional Analysis (Pergamon Press, OxfordElmsford, New York, 1982).

[15] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979), 35-41. doi: 10.1017/S0013091500027784

[16] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428

[17] M. Nowak, Operator measures and integration operators, Indag. Math. 24 (2013), 279-290. doi: 10.1016/j.indag.2012.10.002

[18] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math (in press).

[19] M. Nowak, Completely continuous operators and the strict topology, (submitted).

[20] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522-531.

[21] H.J. Song, Characterizations of weakly precompactness of operators acting between Banach spaces, Kangweon-Kyungki Math. Jour. 12 (2004), 127-146.

[22] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662

[23] M. Talagrand, Weak Cauchy sequences in L₁(E), Amer. J. Math. 106 (1984), 703-724. doi: 10.2307/2374292

[24] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.