Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_1_a3, author = {Stochmal, Juliusz}, title = {Weakly precompact operators on $C_{b}(X,E)$ with the strict topology}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {65--77}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/} }
TY - JOUR AU - Stochmal, Juliusz TI - Weakly precompact operators on $C_{b}(X,E)$ with the strict topology JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 65 EP - 77 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/ LA - en ID - DMDICO_2016_36_1_a3 ER -
%0 Journal Article %A Stochmal, Juliusz %T Weakly precompact operators on $C_{b}(X,E)$ with the strict topology %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 65-77 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/ %G en %F DMDICO_2016_36_1_a3
Stochmal, Juliusz. Weakly precompact operators on $C_{b}(X,E)$ with the strict topology. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 65-77. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a3/
[1] C. Abbott, Weakly precompact and GSP operators on continuous function spaces, Bull. Polish Acad. Sci. Math. 37 (1989), 467-476.
[2] C. Abbott, A. Bator, R. Bilyeu and P. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Camb. Phil. Soc. 108 (1990), 325-335. doi: 10.1017/S030500410006919X
[3] E. Bator and P. Lewis, Operators having weakly precompact adjoints, Math. Nachr. 157 (1992), 99-103. doi: 10.1002/mana.19921570109
[4] J. Bourgain, An averaging result for l₁-sequences and application to weakly conditionallycompact sets in L₁^X, Israel J. Math. 32 (1979), 289-298. doi: 10.1007/BF02760458
[5] A. Bouziad, Luzin measurability of Carath´eodory type mappings, Topology Appl. 154 (2007), 287-301. doi: 10.1016/j.topol.2006.04.013
[6] J.B. Cooper, The strict topology and spaces with mixed topology, Proc. Amer. Math. Soc. 30 (1971), 583-592. doi: 10.1090/S0002-9939-1971-0284789-2
[7] J. Diestel, Sequences and Series in Banach Spaces (Graduate Texts in Math., vol. 92, Springer-Verlag, 1984).
[8] J. Diestel and J.J. Uhl, Vector Measures (Amer. Math. Soc. Surveys 15, 1977).
[9] N. Dinculeanu, Vector Measures (Pergamon Press, New York, 1967). doi: 10.1016/b978-1-4831-9762-3.50004-4
[10] N. Dinculeanu, Vector Integration and Stochastic Integration in Banach Spaces (John Wiley and Sons Inc., 2000). doi: 10.1002/9781118033012
[11] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).
[12] I. Ghenciu, Weak precompactness in the space of vector-valued measures of bounded variation, J. Function Spaces 2015 (2015), ID 213679.
[13] I. Ghenciu and P. Lewis, Strongly bounded representing measures and converging theorems, Glasgow Math. J. 52 (2010), 435-445. doi: 10.1017/S0017089510000133
[14] L.V. Kantorovitch and G.P. Akilov, Functional Analysis (Pergamon Press, OxfordElmsford, New York, 1982).
[15] L.A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979), 35-41. doi: 10.1017/S0013091500027784
[16] L.A. Khan and K. Rowlands, On the representation of strictly continuous linear functionals, Proc. Edinburgh Math. Soc. 24 (1981), 123-130. doi: 10.1017/S0013091500006428
[17] M. Nowak, Operator measures and integration operators, Indag. Math. 24 (2013), 279-290. doi: 10.1016/j.indag.2012.10.002
[18] M. Nowak, A Riesz representation theory for completely regular Hausdorff spaces and its applications, Open Math (in press).
[19] M. Nowak, Completely continuous operators and the strict topology, (submitted).
[20] E. Saab and P. Saab, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522-531.
[21] H.J. Song, Characterizations of weakly precompactness of operators acting between Banach spaces, Kangweon-Kyungki Math. Jour. 12 (2004), 127-146.
[22] J. Schmets and J. Zafarani, Strict topologies and (gDF)-spaces, Arch. Math. 49 (1987), 227-231. doi: 10.1007/BF01271662
[23] M. Talagrand, Weak Cauchy sequences in L₁(E), Amer. J. Math. 106 (1984), 703-724. doi: 10.2307/2374292
[24] A. Wiweger, Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.