Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_1_a2, author = {Kranz, Rados{\l}awa and {\L}enski, W{\l}odzimierz and Szal, Bogdan}, title = {Pointwise strong approximation of almost periodic functions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {45--63}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, zbl = {1261.42003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/} }
TY - JOUR AU - Kranz, Radosława AU - Łenski, Włodzimierz AU - Szal, Bogdan TI - Pointwise strong approximation of almost periodic functions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 45 EP - 63 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/ LA - en ID - DMDICO_2016_36_1_a2 ER -
%0 Journal Article %A Kranz, Radosława %A Łenski, Włodzimierz %A Szal, Bogdan %T Pointwise strong approximation of almost periodic functions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 45-63 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/ %G en %F DMDICO_2016_36_1_a2
Kranz, Radosława; Łenski, Włodzimierz; Szal, Bogdan. Pointwise strong approximation of almost periodic functions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 45-63. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/
[1] A. Avantaggiati, G. Bruno and B. Iannacci, The Hausdorff-Young theorem for almost periodic functions and some applications, Nonlinear Analysis, Theory, Methods and Applications 25 (1) (1995), 61-87.
[2] A.D. Bailey, Almost Everywhere Convergence of Dyadic Partial Sums of Fourier Series for Almost Periodic Functions, Master of Philosophy, A thesis submitted to School of Mathematics of The University of Birmingham for the degree of Master of Philosophy, September, 2008.
[3] A.S. Besicovitch, Almost Periodic Functions (Cambridge, 1932).
[4] L. Leindler, On the uniform convergence and boundedness of a certain class of sine series, Analysis Math. 27 (2001), 279-285. doi: 10.1023/A:1014320328217
[5] L. Leindler, A new extension of monotone sequence and its application, J. Inequal. Pure and Appl. Math. 7 (1) (2006) Art. 39, pp. 7.
[6] W. Łenski, Pointwise strong and very strong approximation of Fourier series, Acta Math. Hung. 115 (3), 207, 215-233.
[7] B.L. Levitan, Almost periodic functions, Gos. Izdat. Tekh-Teoret. Liter. (Moscov, 1953) in Russian.
[8] P. Pych-Taberska, Approximation properties of the partial sums of Fourier series of almost periodic functions, Studia Math. XCVI (1990), 91-103.
[9] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (1) (2007), 721-735. doi: 10.1016/j.jmaa.2006.02.053
[10] S. Tikhonov, On uniform convergence of trigonometric series, Mat. Zametki 81 (2) (2007) 304-310, translation in Math. Notes 81 (2) (2007), 268-274. doi: doi:10.1134/S0001434607010294
[11] S. Tikhonov, Best approximation and moduli of smoothness: Computation and equivalence theorems, J. Approx. Theory 153 (2008), 19-39. doi: 10.1016/j.jat.2007.05.006
[12] A. Zygmund, Trigonometric Series (Cambridge, 2002.e, 2002).