Pointwise strong approximation of almost periodic functions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 45-63.

Voir la notice de l'article provenant de la source Library of Science

We consider the class GM(₂β) in pointwise estimate of the deviations in strong mean of almost periodic functions from matrix means of partial sums of their Fourier series.
Keywords: almost periodic functions, rate of strong approximation, summability of Fourier series
@article{DMDICO_2016_36_1_a2,
     author = {Kranz, Rados{\l}awa and {\L}enski, W{\l}odzimierz and Szal, Bogdan},
     title = {Pointwise strong approximation of almost periodic functions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {45--63},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     zbl = {1261.42003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/}
}
TY  - JOUR
AU  - Kranz, Radosława
AU  - Łenski, Włodzimierz
AU  - Szal, Bogdan
TI  - Pointwise strong approximation of almost periodic functions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2016
SP  - 45
EP  - 63
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/
LA  - en
ID  - DMDICO_2016_36_1_a2
ER  - 
%0 Journal Article
%A Kranz, Radosława
%A Łenski, Włodzimierz
%A Szal, Bogdan
%T Pointwise strong approximation of almost periodic functions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2016
%P 45-63
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/
%G en
%F DMDICO_2016_36_1_a2
Kranz, Radosława; Łenski, Włodzimierz; Szal, Bogdan. Pointwise strong approximation of almost periodic functions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 45-63. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a2/

[1] A. Avantaggiati, G. Bruno and B. Iannacci, The Hausdorff-Young theorem for almost periodic functions and some applications, Nonlinear Analysis, Theory, Methods and Applications 25 (1) (1995), 61-87.

[2] A.D. Bailey, Almost Everywhere Convergence of Dyadic Partial Sums of Fourier Series for Almost Periodic Functions, Master of Philosophy, A thesis submitted to School of Mathematics of The University of Birmingham for the degree of Master of Philosophy, September, 2008.

[3] A.S. Besicovitch, Almost Periodic Functions (Cambridge, 1932).

[4] L. Leindler, On the uniform convergence and boundedness of a certain class of sine series, Analysis Math. 27 (2001), 279-285. doi: 10.1023/A:1014320328217

[5] L. Leindler, A new extension of monotone sequence and its application, J. Inequal. Pure and Appl. Math. 7 (1) (2006) Art. 39, pp. 7.

[6] W. Łenski, Pointwise strong and very strong approximation of Fourier series, Acta Math. Hung. 115 (3), 207, 215-233.

[7] B.L. Levitan, Almost periodic functions, Gos. Izdat. Tekh-Teoret. Liter. (Moscov, 1953) in Russian.

[8] P. Pych-Taberska, Approximation properties of the partial sums of Fourier series of almost periodic functions, Studia Math. XCVI (1990), 91-103.

[9] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (1) (2007), 721-735. doi: 10.1016/j.jmaa.2006.02.053

[10] S. Tikhonov, On uniform convergence of trigonometric series, Mat. Zametki 81 (2) (2007) 304-310, translation in Math. Notes 81 (2) (2007), 268-274. doi: doi:10.1134/S0001434607010294

[11] S. Tikhonov, Best approximation and moduli of smoothness: Computation and equivalence theorems, J. Approx. Theory 153 (2008), 19-39. doi: 10.1016/j.jat.2007.05.006

[12] A. Zygmund, Trigonometric Series (Cambridge, 2002.e, 2002).