On some properties of quotients of homogeneous C(K) spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 33-43.

Voir la notice de l'article provenant de la source Library of Science

We say that an infinite, zero dimensional, compact Hausdorff space K has property (*) if for every nonempty open subset U of K there exists an open and closed subset V of U which is homeomorphic to K. We show that if K is a compact Hausdorff space with property (*) and X is a Banach space which contains a subspace isomorphic to the space C(K) of all scalar (real or complex) continuous functions on K and Y is a closed linear subspace of X which does not contain any subspace isomorphic to the space C([0,1]), then the quotient space X/Y contains a subspace isomorphic to the space C(K).
Keywords: nonseparable C(K) spaces, quotients of C(K) spaces
@article{DMDICO_2016_36_1_a1,
     author = {Michalak, Artur},
     title = {On some properties of quotients of homogeneous {C(K)} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/}
}
TY  - JOUR
AU  - Michalak, Artur
TI  - On some properties of quotients of homogeneous C(K) spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2016
SP  - 33
EP  - 43
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/
LA  - en
ID  - DMDICO_2016_36_1_a1
ER  - 
%0 Journal Article
%A Michalak, Artur
%T On some properties of quotients of homogeneous C(K) spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2016
%P 33-43
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/
%G en
%F DMDICO_2016_36_1_a1
Michalak, Artur. On some properties of quotients of homogeneous C(K) spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/

[1] H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15. doi: 10.1090/S0002-9947-1961-0132375-5

[2] R. Engelking, General Topology (Monografie Matematyczne 60, PWN - Polish Scientific Publishers, Warszawa, 1977).

[3] L. Gillman and M. Jerison, Rings of Continuous Functions (D. Van Nostrand Company, INC. Princeton, N.J.-Toronto-New York-London, 1960).

[4] J.L. Kelley, General Topology (D. Van Nostrand Company, Inc., Toronto-New YorkLondon, 1955).

[5] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249. doi: 10.1016/0022-1236(71)90011-5

[6] A. Michalak, On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity, Studia Math. 155 (2003), 171-182. doi: 10.4064/sm155-2-6

[7] A. Michalak, On uncomplemented isometric copies of c0 in spaces of continuous functions on products of the two-arrows space, Indagationes Math. 26 (2015), 162-173. doi: 10.1016/j.indag.2014.09.003