Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_1_a1, author = {Michalak, Artur}, title = {On some properties of quotients of homogeneous {C(K)} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {33--43}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/} }
TY - JOUR AU - Michalak, Artur TI - On some properties of quotients of homogeneous C(K) spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 33 EP - 43 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/ LA - en ID - DMDICO_2016_36_1_a1 ER -
%0 Journal Article %A Michalak, Artur %T On some properties of quotients of homogeneous C(K) spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 33-43 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/ %G en %F DMDICO_2016_36_1_a1
Michalak, Artur. On some properties of quotients of homogeneous C(K) spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a1/
[1] H.H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15. doi: 10.1090/S0002-9947-1961-0132375-5
[2] R. Engelking, General Topology (Monografie Matematyczne 60, PWN - Polish Scientific Publishers, Warszawa, 1977).
[3] L. Gillman and M. Jerison, Rings of Continuous Functions (D. Van Nostrand Company, INC. Princeton, N.J.-Toronto-New York-London, 1960).
[4] J.L. Kelley, General Topology (D. Van Nostrand Company, Inc., Toronto-New YorkLondon, 1955).
[5] J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249. doi: 10.1016/0022-1236(71)90011-5
[6] A. Michalak, On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity, Studia Math. 155 (2003), 171-182. doi: 10.4064/sm155-2-6
[7] A. Michalak, On uncomplemented isometric copies of c0 in spaces of continuous functions on products of the two-arrows space, Indagationes Math. 26 (2015), 162-173. doi: 10.1016/j.indag.2014.09.003