Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2016_36_1_a0, author = {Laskowski, W{\l}odzimierz and Nguyen, Hong}, title = {Effective energy integral functionals for thin films with three dimensional bending moment in the {Orlicz-Sobolev} space setting}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {7--31}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, zbl = {1307.49014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a0/} }
TY - JOUR AU - Laskowski, Włodzimierz AU - Nguyen, Hong TI - Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2016 SP - 7 EP - 31 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a0/ LA - en ID - DMDICO_2016_36_1_a0 ER -
%0 Journal Article %A Laskowski, Włodzimierz %A Nguyen, Hong %T Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2016 %P 7-31 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a0/ %G en %F DMDICO_2016_36_1_a0
Laskowski, Włodzimierz; Nguyen, Hong. Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 36 (2016) no. 1, pp. 7-31. http://geodesic.mathdoc.fr/item/DMDICO_2016_36_1_a0/
[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), 125-145. doi: 10.1007/BF00275731
[2] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2 ed. (Academic Press, 2003).
[3] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), 1-28. doi: 10.1007/BF02383608
[4] G. Bouchitté, I. Fonseca and M.L. Mascarenhas, Bending moment in membrane theory, J. Elasticity 73 (2004), 75-99. doi: 10.1023/B:ELAS.0000029996.20973.92
[5] G. Bouchitté, I. Fonseca and M.L. Mascarenhas, The Cosserat Vector In Membrane Theory: A Variational Approach, J. Convex Anal. 16 (2009), 351-365.
[6] A. Braides, I. Fonseca and G. Francfort, 3D-2D-asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J. 49 (2000), 1367-1404. doi: 10.1512/iumj.2000.49.1822
[7] D. Breit, B. Stroffolini and A. Verde, A general regularity theorem for functionals with ϕ-growth, J. Math. Anal. Appl. 383 (2011), 226-233. doi: 10.1016/j.jmaa.2011.05.012
[8] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd revised edition (Springer, Berlin, 2008).
[9] G. Dal Maso, An Introduction to Γ-Convergence (Birkhäuser, Boston, 1993). doi: 10.1007/978-1-4612-0327-8
[10] T.K. Donaldson and N.S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75. doi: 10.1016/0022-1236(71)90018-8
[11] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory (Interscience, New York, 1957).
[12] A. Fiorenza and M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolinae 38 (1997), 433-451.
[13] M. Focardi, Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste 29 (1997), 141-161.
[14] I. Fonseca, S. Müller and P.Pedregal, Analysis of concentration and oscillation effects generated by gradients, S, IAM J. Math. Anal. 29 (1998), 736-756. doi: 10.1137/S0036141096306534
[15] A. Fougères, Théoremès de trace et de prolongement dans les espaces de Sobolev et Sobolev-Orlicz, C.R. Acad. Sci. Paris Sér. A-B 274 (1972), A181-A184.
[16] G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006), 183-236. doi: 10.1007/s00205-005-0400-7
[17] M. García-Huidobro, V.K. Le, R. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 207-225. doi: 10.1007/s000300050073
[18] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coeffcients, Trans. Am. Math. Soc. 190 (1974), 163-205. doi: 10.1090/S0002-9947-1974-0342854-2
[19] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces W_k^M(Ω), Comment. Math. Prace Mat. 21 (1980), 315-324.
[20] A. Kamińska and B. Turett, Type and cotype in Musielak-Orlicz spaces, in: Geometry of Banach Spaces, London Mathematical Society Lecture Note Series 158 (1991) Cambridge University Press, 165-180. doi: 10.1017/CBO9780511662317.015
[21] A. Kałamajska and M. Krbec, Traces of Orlicz-Sobolev functions under general growth restrictions, Mathematische Nachrichten 286 (2013), 730-742. doi: 10.1002/mana.201100185
[22] V.S. Klimov, On imbedding theorems for anisotropic classes of functions, Mathematics of the USSR-Sbornik 55 (1986), 195-205. doi: 10.1070/SM1986v055n01ABEH002999
[23] M.A. Krasnosel’skii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces (P. Noordhoof LTD., Groningen, 1961).
[24] W. Laskowski and H.T. Nguyen, Effective energy integral functionals for thin films in the Orlicz-Sobolev space setting, Demonstratio Math. 46 (2013), 589-608.
[25] W. Laskowski and H.T. Nguyen, Effective energy integral functionals for thin films with bending moment in the Orlicz-Sobolev space setting, Banach Center Publ., Polish Acad. Sci., Warsaw 102 (2014), 143-167.
[26] H. Le Dret and A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C.R. Acad. Sci. Paris Sér. I Math. 317 (1993), 221-226.
[27] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear threedimensional elasticity, J. Math. Pures Appl. 74 (1995), 549-578.
[28] L. Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234 (1985), 1-49.
[29] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Campinas SP, Univ. of Campinas (Brazil, 1989).
[30] V. Mazja, Sobolev Spaces (Springer, New York, 1985). doi: 10.1007/978-3-662-09922-3
[31] M.G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density, J. Diff. Equ. 252 (2012), 35-55. doi: 10.1016/j.jde.2011.09.009
[32] C.B.Jr. Morrey, Multiple Integrals in the Calculus of Variations (Classics in Mathematics) (Springer, New York, 1966, Reprint in 2008).
[33] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (Springer, Berlin, 1983).
[34] P. Pedregal, Parametrized Measures and Variational Principles (Birkhäuser, Basel, 1997). doi: 10.1007/978-3-0348-8886-8
[35] R. Płuciennik, S. Tian and Y. Wang, Non-convex integral functionals on MusielakOrlicz spaces, Comment. Math. Prace Mat. 30 (1990), 113-123.