Boundedness of set-valued stochastic integrals
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 197-207.

Voir la notice de l'article provenant de la source Library of Science

The paper deals with integrably boundedness of Itô set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4], where has not been proved that this integral is integrably bounded. The problem of integrably boundedness of the above set-valued stochastic integrals has been considered in the paper [7] and the monograph [8], but the problem has not been solved there. The first positive results dealing with this problem due to M. Michta, who showed (see [11]) that there are bounded set-valued -nonanticipative mappings having unbounded Itô set-valued stochastic integrals defined by E.J. Jung and J.H. Kim. The present paper contains some new conditions implying unboundedness of the above type set-valued stochastic integrals.
Keywords: set-valued mapping, Itô set-valued integral, set-valued stochastic process, integrably boundedness of set-valued integral
@article{DMDICO_2015_35_2_a4,
     author = {Kisielewicz, Micha{\l}},
     title = {Boundedness of set-valued stochastic integrals},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {197--207},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a4/}
}
TY  - JOUR
AU  - Kisielewicz, Michał
TI  - Boundedness of set-valued stochastic integrals
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 197
EP  - 207
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a4/
LA  - en
ID  - DMDICO_2015_35_2_a4
ER  - 
%0 Journal Article
%A Kisielewicz, Michał
%T Boundedness of set-valued stochastic integrals
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 197-207
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a4/
%G en
%F DMDICO_2015_35_2_a4
Kisielewicz, Michał. Boundedness of set-valued stochastic integrals. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 197-207. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a4/

[1] F. Hiai, Multivalued stochastic integrals and stochastic inclusions, Division of Applied Mathematics, Research Institute of Applied Electricity, Sapporo 060 Japan (not published).

[2] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. doi: 10.1016/0047-259X(77)90037-9

[3] Sh. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis I (Kluwer Academic Publishers, Dordrecht, London, 1997). doi: 10.1007/978-1-4615-6359-4

[4] E.J. Jung and J. H. Kim, On the set-valued stochastic integrals, Stoch. Anal. Appl. 21 (2) (2003), 401-418. doi: 10.1081/SAP-120019292

[5] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-74.

[6] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997), 783-800. doi: 10.1080/07362999708809507

[7] M. Kisielewicz, Some properties of set-valued stochastic integrals, J. Math. Anal. Appl. 388 (2012), 984-995. doi: 10.1016/j.jmaa.2011.10.050

[8] M. Kisielewicz, Stochastic Differential Inclusions and Applications (Springer, New York, 2013). doi: 10.1007/978-1-4614-6756-4

[9] M. Kisielewicz, Properties of generalized set-valued stochastic integrals, Discuss. Math. DICO 34 (1) (2014), 131-147. doi: 10.7151/dmdico.1155

[10] M. Kisielewicz and M. Michta, Integrably bounded set-valued stochastic integrals, J. Math. Anal. Appl. (submitted to print).

[11] M. Michta, Remarks on unboundedness of set-valued Itô stochastic integrals, J. Math. Anal. Appl 424 (2015), 651-663. doi: 10.1016/j.jmaa.2014.11.041