Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2015_35_2_a3, author = {Ahmed, N.}, title = {Optimal control of general {McKean-Vlasov} stochastic evolution equations on {Hilbert} spaces and necessary conditions of optimality}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {165--195}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a3/} }
TY - JOUR AU - Ahmed, N. TI - Optimal control of general McKean-Vlasov stochastic evolution equations on Hilbert spaces and necessary conditions of optimality JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2015 SP - 165 EP - 195 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a3/ LA - en ID - DMDICO_2015_35_2_a3 ER -
%0 Journal Article %A Ahmed, N. %T Optimal control of general McKean-Vlasov stochastic evolution equations on Hilbert spaces and necessary conditions of optimality %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2015 %P 165-195 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a3/ %G en %F DMDICO_2015_35_2_a3
Ahmed, N. Optimal control of general McKean-Vlasov stochastic evolution equations on Hilbert spaces and necessary conditions of optimality. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 165-195. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a3/
[1] N.U. Ahmed, Systems governed by mean-field stochastic evolution equations on Hilbert spaces and their optimal control, Nonlinear Anal. (submitted).
[2] N.U. Ahmed, Nonlinear diffusion governed by McKean-Vlasov equation on Hilbert space and optimal control, SIAM J. Control and Optim. 46 (1) (2007), 356-378. doi: 10.1137/050645944
[3] N.U. Ahmed and X. Ding, A semilinear McKean-Vlasov stochastic evolution equation in Hilbert space, Stoch. Proc. Appl. 60 (1995), 65-85. doi: 10.1016/0304-4149(95)00050-X
[4] N.U. Ahmed and X. Ding, Controlled McKean-Vlasov equations, Commun. Appl. Anal. 5 (2001), 183-206.
[5] N.U. Ahmed, C.D. Charalambous, Stochastic minimum principle for partially observed systems subject to continuous and jump diffusion processes and drviven by relaxed controls, SIAM J. Control and Optim. 51 (4) (2013), 3235-3257. doi: 10.1137/120885656
[6] N.U. Ahmed, Stochastic neutral evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality, Nonlinear Anal. (A) Theory, Methods Applications 101 (2014), 66-79. doi: 10.1016/j.na.2014.01.019
[7] N.U. Ahmed, Stochastic neutral evolution equations on Hilbert spaces and their partially observed optimal relaxed control, J. Abstract Diff. Equ. Appl. 5 (1) (2014), 1-20.
[8] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, Vol. 246, Longman Scientific and Technical, U.K. (Co-published with John-Wiley Sons, Inc. New York, 1991).
[9] N.U. Ahmed, Stochastic evolution equations on Hilbert spaces with partially observed relaxed controls and their necessary conditions of optimality, Discuss. Math. Diff. Incl., Control and Optim. 34 (2014), 105-129. doi: 10.7151/dmdico.1153
[10] N.U. Ahmed, Stochastic initial boundary value problems subject to distributed and boundary noise and their optimal control, JMAA 421 (2015), 157-179. doi: 10.1016/j.jmaa.2014.06.078
[11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions (Cambridge University Press, 1992). doi: 10.1017/CBO9780511666223
[12] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Math. Soc. Lecture Note Ser. 229 (Cambridge University Press, London, 1996). doi: 10.1017/CBO9780511662829
[13] D.A. Dawson, Critical dynamics and fluctuations for a mean-field model of cooperative behavior, J. Stat. Phys. 31 (1983), 29-85. doi: 10.1007/BF01010922
[14] D.A. Dawson and J. Gartner, Large Deviations, Free Energy Functional and Quasi-Potential for a Mean Field Model of Interacting Diffusions, Mem. Amer. Math. Soc. 398 (Providence, RI, 1989).
[15] N. Dunford and J.T. Schwartz, Linear Operators, Part 1 (Interscience Publishers, Inc., New York, 1958).
[16] Y. Hu and S. Peng, Adaptive solution of a backward semilinear stochastic evolution equation, Stoch. Anal. Appl. 9 (4) (1991), 445-459. doi: 10.1080/07362999108809250
[17] N.I. Mahmudov and M.A. McKibben, Abstract second order damped McKean-Vlasov stochastic evolution equations, Stoch. Anal. Appl. 24 (2006), 303-328. doi: 10.1080/07362990500522247
[18] H.P. McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Natl. Acad. Sci. USA 56 (1966), 1907-1911. doi: 10.1073/pnas.56.6.1907
[19] Yang Shen and Tak Kuen Siu, The maximum principle for a jump-diffusion mean-field model and its application to the mean-variance problem, Nonlin. Anal. 86 (2013), 58-73. doi: 10.1016/j.na.2013.02.029