Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 123-150.

Voir la notice de l'article provenant de la source Library of Science

The goal of this paper is to study nonlinear anisotropic problems with Fourier boundary conditions. We first prove, by using the technic of monotone operators in Banach spaces, the existence of weak solutions, and by approximation methods, we prove a result of existence and uniqueness of entropy solution.
Keywords: anisotropic Sobolev spaces, variable exponent, monotone operator, Fourier boundary conditions, entropy solutions
@article{DMDICO_2015_35_2_a1,
     author = {Ibrango, Idrissa and Ouaro, Stanislas},
     title = {Entropy solution for doubly nonlinear elliptic anisotropic problems with {Fourier} boundary conditions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {123--150},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/}
}
TY  - JOUR
AU  - Ibrango, Idrissa
AU  - Ouaro, Stanislas
TI  - Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 123
EP  - 150
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/
LA  - en
ID  - DMDICO_2015_35_2_a1
ER  - 
%0 Journal Article
%A Ibrango, Idrissa
%A Ouaro, Stanislas
%T Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 123-150
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/
%G en
%F DMDICO_2015_35_2_a1
Ibrango, Idrissa; Ouaro, Stanislas. Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 123-150. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/

[1] S.N. Antontsev and J.F. Rodrigues, On stationary thermorheological viscous flows, Annal. del Univ. de Ferrara 52 (2006), 19-36. doi: 10.1007/s11565-006-0002-9

[2] B.K. Bonzi and S. Ouaro, Entropy solution for a doubly nonlinear elliptic problem with variable exponent, J. Math. Anal. Appl. 370 (2) (2010), 392-405. doi: 10.1016/j.jmaa.2010.05.022

[3] B.K. Bonzi, S. Ouaro and F.D.Y. Zongo, Nonlinear elliptic anisotropic problem with Fourier boundary condition, Int. J. Evol. Equ. 8 (4) (2013), 305-328.

[4] B.K. Bonzi, S. Ouaro and F.D.Y. Zongo, Entropy solutions to nonlinear elliptic anisotropic problem with Robin boundary condition, Matematiche 68 (2013), 53-76.

[5] B.K. Bonzi, S. Ouaro and F.D.Y. Zongo, Entropy solutions for nonlinear elliptic anisotropic homogeneous Neumann problem, Int. J. Differ. Equ. Article 476781 (2013), pp. 14. doi: 10.1155/2013/476781

[6] M. Boureanu and V. D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlin. Anal. 75 (2012), 4471-4482. doi: 10.1016/j.na.2011.09.033

[7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM. J. Appl. Math. 66 (2006), 1383-1406. doi: 10.1137/050624522

[8] X. Fan, Anisotropic variable exponent Sobolev spaces and $\vec{p}(·)$-Laplacian equations, Complex Var. Elliptic Equ. 55 (2010), 1-20. doi: 10.1080/17476930902999082

[9] X. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{1,p(x)}(Ω)$, J. Math. Appl. 263 (2001), 424-446.

[10] B. Koné, S. Ouaro and S. Traoré, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Diff. Equ. 144 (2009), 1-11.

[11] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czech. Math. J. 41 (1991), 592-618.

[12] M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698. doi: 10.1016/j.jmaa.2007.09.015

[13] M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A 462 (2006), 2625-2641. doi: 10.1098/rspa.2005.1633

[14] I. Nyanquini and S. Ouaro, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition, Afr. Mat. 23 (2012), 205-228. doi: 10.1007/s13370-011-0030-1

[15] S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L¹-data, Cubo J. 12 (2010), 133-148. doi: 10.4067/S0719-06462010000100012

[16] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, vol. 49, American Mathematical Society.

[17] M. Troisi, Theoremi di inclusione per spazi di Sobolev non isotropi, Recherche. Mat. 18 (1969), 3-24.