Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2015_35_2_a1, author = {Ibrango, Idrissa and Ouaro, Stanislas}, title = {Entropy solution for doubly nonlinear elliptic anisotropic problems with {Fourier} boundary conditions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {123--150}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/} }
TY - JOUR AU - Ibrango, Idrissa AU - Ouaro, Stanislas TI - Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2015 SP - 123 EP - 150 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/ LA - en ID - DMDICO_2015_35_2_a1 ER -
%0 Journal Article %A Ibrango, Idrissa %A Ouaro, Stanislas %T Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2015 %P 123-150 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/ %G en %F DMDICO_2015_35_2_a1
Ibrango, Idrissa; Ouaro, Stanislas. Entropy solution for doubly nonlinear elliptic anisotropic problems with Fourier boundary conditions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 2, pp. 123-150. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_2_a1/
[1] S.N. Antontsev and J.F. Rodrigues, On stationary thermorheological viscous flows, Annal. del Univ. de Ferrara 52 (2006), 19-36. doi: 10.1007/s11565-006-0002-9
[2] B.K. Bonzi and S. Ouaro, Entropy solution for a doubly nonlinear elliptic problem with variable exponent, J. Math. Anal. Appl. 370 (2) (2010), 392-405. doi: 10.1016/j.jmaa.2010.05.022
[3] B.K. Bonzi, S. Ouaro and F.D.Y. Zongo, Nonlinear elliptic anisotropic problem with Fourier boundary condition, Int. J. Evol. Equ. 8 (4) (2013), 305-328.
[4] B.K. Bonzi, S. Ouaro and F.D.Y. Zongo, Entropy solutions to nonlinear elliptic anisotropic problem with Robin boundary condition, Matematiche 68 (2013), 53-76.
[5] B.K. Bonzi, S. Ouaro and F.D.Y. Zongo, Entropy solutions for nonlinear elliptic anisotropic homogeneous Neumann problem, Int. J. Differ. Equ. Article 476781 (2013), pp. 14. doi: 10.1155/2013/476781
[6] M. Boureanu and V. D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlin. Anal. 75 (2012), 4471-4482. doi: 10.1016/j.na.2011.09.033
[7] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM. J. Appl. Math. 66 (2006), 1383-1406. doi: 10.1137/050624522
[8] X. Fan, Anisotropic variable exponent Sobolev spaces and $\vec{p}(·)$-Laplacian equations, Complex Var. Elliptic Equ. 55 (2010), 1-20. doi: 10.1080/17476930902999082
[9] X. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{1,p(x)}(Ω)$, J. Math. Appl. 263 (2001), 424-446.
[10] B. Koné, S. Ouaro and S. Traoré, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Diff. Equ. 144 (2009), 1-11.
[11] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}$ and $W^{1,p(x)}$, Czech. Math. J. 41 (1991), 592-618.
[12] M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698. doi: 10.1016/j.jmaa.2007.09.015
[13] M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. A 462 (2006), 2625-2641. doi: 10.1098/rspa.2005.1633
[14] I. Nyanquini and S. Ouaro, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition, Afr. Mat. 23 (2012), 205-228. doi: 10.1007/s13370-011-0030-1
[15] S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L¹-data, Cubo J. 12 (2010), 133-148. doi: 10.4067/S0719-06462010000100012
[16] R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical surveys and monographs, vol. 49, American Mathematical Society.
[17] M. Troisi, Theoremi di inclusione per spazi di Sobolev non isotropi, Recherche. Mat. 18 (1969), 3-24.