Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2015_35_1_a4, author = {Gil', Michael}, title = {Exponential stability of nonlinear non-autonomous multivariable systems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {89--100}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/} }
TY - JOUR AU - Gil', Michael TI - Exponential stability of nonlinear non-autonomous multivariable systems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2015 SP - 89 EP - 100 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/ LA - en ID - DMDICO_2015_35_1_a4 ER -
%0 Journal Article %A Gil', Michael %T Exponential stability of nonlinear non-autonomous multivariable systems %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2015 %P 89-100 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/ %G en %F DMDICO_2015_35_1_a4
Gil', Michael. Exponential stability of nonlinear non-autonomous multivariable systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/
[1] D. Aeyels and J. Peuteman, A new asymptotic stability criterion for nonlinear time-variant differential equations, IEEE Trans. Autom. Control 43 (1998), 968-971. doi: 10.1109/9.701102
[2] A.Yu. Aleksandrov E.B. Aleksandrova and A.P. Zhabko, Stability analysis for a class of nonlinear nonstationary systems via averaging, Nonlinear Dyn. Syst. Theory 13 (2013), 332-343.
[3] B.F. Bylov, B.M. Grobman, V.V. Nemyckii and R.E. Vinograd, The Theory of Lyapunov Exponents (Nauka, Moscow, 1966). In Russian.
[4] Yu.L. Daleckii and M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, AMS, Providence, R.I., 1974.
[5] C.A. Desoer, Slowly varying systems ẋ=A(t)x, IEEE Transactions on Automatic Control 14 (1969), 780-781. doi: 10.1109/TAC.1969.1099336
[6] M.I. Gil', Explicit Stability Conditions for Continuous Systems, Lectures Notes In Control and Information Sciences, Vol. 314 (Springer Verlag, Berlin, 2005).
[7] M.I. Gil', Stability of linear nonautonomous multivariable systems with differentiable matrices, Systems Control Letters 81 (2015), 31-33. doi: 10.1016/j.sysconle.2015.03.005
[8] Karafyllis, Iasson and Jiang, Zhong-Ping, Stability and Stabilization of Nonlinear Systems, Communications and Control Engineering Series (Springer-Verlag London, Ltd., London, 2011).
[9] M.R. Liberzon, Essays on the absolute stability theory, Automation and Remote Control 67 (2006), 1610-1644. doi: 10.1134/S0005117906100043
[10] Nikravesh, Seyed Kamaleddin Yadavar, Nonlinear Systems Stability Analysis. Lyapunov-based Approach (CRC Press, Boca Raton, FL, 2013). doi: 10.1201/b13731
[11] J. Peuteman and D. Aeyels, Exponential stability of nonlinear time-varying differential equations and partial averaging, Math. Control Signals Syst. 15 (2013), 42-70. doi: 10.1007/s004980200002
[12] J. Peuteman and D. Aeyels, Exponential stability of slowly time-varying nonlinear systems, Math. Control Signals Syst. 15 (2013), 202-228. doi: 10.1007/s004980200008
[13] Rionero, Salvatore, On the nonlinear stability of nonautonomous binary systems, Nonlin. Anal. 75 (2012), 2338-2348. doi: 10.1016/j.na.2011.10.032
[14] V.A. Yakubovich, The application of the theory of linear periodic Hamiltonian systems to problems of absolute stability of nonlinear systems with a periodic nonstationary linear part, Vestn. Leningr. Univ. Math. 20 (1987), 59-65.
[15] R.E. Vinograd, An improved estimate in the method of freezing, Proc. Amer. Soc. 89 (1983), 125-129. doi: 10.1090/S0002-9939-1983-0706524-1