Exponential stability of nonlinear non-autonomous multivariable systems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 89-100.

Voir la notice de l'article provenant de la source Library of Science

We consider nonlinear non-autonomous multivariable systems governed by differential equations with differentiable linear parts. Explicit conditions for the exponential stability are established. These conditions are formulated in terms of the norms of the derivatives and eigenvalues of the variable matrices, and certain scalar functions characterizing the nonlinearity. Moreover, an estimate for the solutions is derived. It gives us a bound for the region of attraction of the steady state. As a particular case we obtain absolute stability conditions.
Keywords: nonlinear nonautonomous systems, exponential stability, absolute stability
@article{DMDICO_2015_35_1_a4,
     author = {Gil', Michael},
     title = {Exponential stability of nonlinear non-autonomous multivariable systems},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/}
}
TY  - JOUR
AU  - Gil', Michael
TI  - Exponential stability of nonlinear non-autonomous multivariable systems
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 89
EP  - 100
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/
LA  - en
ID  - DMDICO_2015_35_1_a4
ER  - 
%0 Journal Article
%A Gil', Michael
%T Exponential stability of nonlinear non-autonomous multivariable systems
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 89-100
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/
%G en
%F DMDICO_2015_35_1_a4
Gil', Michael. Exponential stability of nonlinear non-autonomous multivariable systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 89-100. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a4/

[1] D. Aeyels and J. Peuteman, A new asymptotic stability criterion for nonlinear time-variant differential equations, IEEE Trans. Autom. Control 43 (1998), 968-971. doi: 10.1109/9.701102

[2] A.Yu. Aleksandrov E.B. Aleksandrova and A.P. Zhabko, Stability analysis for a class of nonlinear nonstationary systems via averaging, Nonlinear Dyn. Syst. Theory 13 (2013), 332-343.

[3] B.F. Bylov, B.M. Grobman, V.V. Nemyckii and R.E. Vinograd, The Theory of Lyapunov Exponents (Nauka, Moscow, 1966). In Russian.

[4] Yu.L. Daleckii and M.G. Krein, Stability of Solutions of Differential Equations in Banach Space, AMS, Providence, R.I., 1974.

[5] C.A. Desoer, Slowly varying systems ẋ=A(t)x, IEEE Transactions on Automatic Control 14 (1969), 780-781. doi: 10.1109/TAC.1969.1099336

[6] M.I. Gil', Explicit Stability Conditions for Continuous Systems, Lectures Notes In Control and Information Sciences, Vol. 314 (Springer Verlag, Berlin, 2005).

[7] M.I. Gil', Stability of linear nonautonomous multivariable systems with differentiable matrices, Systems Control Letters 81 (2015), 31-33. doi: 10.1016/j.sysconle.2015.03.005

[8] Karafyllis, Iasson and Jiang, Zhong-Ping, Stability and Stabilization of Nonlinear Systems, Communications and Control Engineering Series (Springer-Verlag London, Ltd., London, 2011).

[9] M.R. Liberzon, Essays on the absolute stability theory, Automation and Remote Control 67 (2006), 1610-1644. doi: 10.1134/S0005117906100043

[10] Nikravesh, Seyed Kamaleddin Yadavar, Nonlinear Systems Stability Analysis. Lyapunov-based Approach (CRC Press, Boca Raton, FL, 2013). doi: 10.1201/b13731

[11] J. Peuteman and D. Aeyels, Exponential stability of nonlinear time-varying differential equations and partial averaging, Math. Control Signals Syst. 15 (2013), 42-70. doi: 10.1007/s004980200002

[12] J. Peuteman and D. Aeyels, Exponential stability of slowly time-varying nonlinear systems, Math. Control Signals Syst. 15 (2013), 202-228. doi: 10.1007/s004980200008

[13] Rionero, Salvatore, On the nonlinear stability of nonautonomous binary systems, Nonlin. Anal. 75 (2012), 2338-2348. doi: 10.1016/j.na.2011.10.032

[14] V.A. Yakubovich, The application of the theory of linear periodic Hamiltonian systems to problems of absolute stability of nonlinear systems with a periodic nonstationary linear part, Vestn. Leningr. Univ. Math. 20 (1987), 59-65.

[15] R.E. Vinograd, An improved estimate in the method of freezing, Proc. Amer. Soc. 89 (1983), 125-129. doi: 10.1090/S0002-9939-1983-0706524-1