Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2015_35_1_a0, author = {Pallaschke, Diethard and Pumpl\"un, Dieter}, title = {Spaces of {Lipschitz} functions on metric spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--23}, publisher = {mathdoc}, volume = {35}, number = {1}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/} }
TY - JOUR AU - Pallaschke, Diethard AU - Pumplün, Dieter TI - Spaces of Lipschitz functions on metric spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2015 SP - 5 EP - 23 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/ LA - en ID - DMDICO_2015_35_1_a0 ER -
%0 Journal Article %A Pallaschke, Diethard %A Pumplün, Dieter %T Spaces of Lipschitz functions on metric spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2015 %P 5-23 %V 35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/ %G en %F DMDICO_2015_35_1_a0
Pallaschke, Diethard; Pumplün, Dieter. Spaces of Lipschitz functions on metric spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/
[1] R.F. Arens and J. Eells, Jr, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. doi: 10.2140/pjm.1956.6.397
[2] H. Bauer, Wahrscheinlichkeitstheorie (5te Auflage), de Gruyter Lehrbuch, Walter de Gruyter Co. (Berlin, 2002).
[3] N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l' analyse, no. 1102. Hermann et Cie. (Paris, 1950).
[4] N. Dunford and J.T. Schwartz, Linear Operators: Part I, Interscience Publishers, Inc. (New York, 1957).
[5] D. Pumplün, Elemente der Kategorientheorie, Hochschultaschenbuch (Spektrum Akademischer Verlag, Heidelberg, Berlin, 1999).
[6] D. Pumplün, The metric completion of convex sets and modules, Result. Math. 41 (2002), 346-360. doi: 10.1007/BF03322777
[7] D. Pumplün, A universal compactification of topological positively convex sets, J. Convex Anal. 18 (4) (2011), 999-1012.
[8] S. Rolewicz, Metric Linear Spaces, PWN - Polish Scientific Publishers, Warszawa and D. Reidel Publishing Company (Dordrecht, 1972).
[9] Z. Semadeni, Banach Spaces of Continuous Functions, Vol. I PWN - Polish Scientific Publishers (Warszawa, 1971).
[10] Z. Semadeni, Some Saks-space dualities in harmonic analysis on commutative semigroups, Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979), 71-87 (North-Holland, Amsterdam-New York, 1980).
[11] D.R. Sherbert, The structure of ideals and point derivations in Banach Algebras of Lipschitz functions, Trans AMS 111 (1964), 240-272. doi: 10.1090/S0002-9947-1964-0161177-1
[12] Nik Weaver, Lipschitz Algebras, World Scientific (Singapore, New Jersey, London, Hong Kong, 1999).
[13] Yau Chuen Wong and Kung Fu Ng, Partially Ordered Topological Vector Spaces, Oxford Mathematical Monographs. Clarendon Press, Oxford, 1973.