Spaces of Lipschitz functions on metric spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 5-23.

Voir la notice de l'article provenant de la source Library of Science

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
Keywords: categories of Lipschitz spaces, Saks spaces, base normed spaces
@article{DMDICO_2015_35_1_a0,
     author = {Pallaschke, Diethard and Pumpl\"un, Dieter},
     title = {Spaces of {Lipschitz} functions on metric spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {5--23},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/}
}
TY  - JOUR
AU  - Pallaschke, Diethard
AU  - Pumplün, Dieter
TI  - Spaces of Lipschitz functions on metric spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 5
EP  - 23
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/
LA  - en
ID  - DMDICO_2015_35_1_a0
ER  - 
%0 Journal Article
%A Pallaschke, Diethard
%A Pumplün, Dieter
%T Spaces of Lipschitz functions on metric spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 5-23
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/
%G en
%F DMDICO_2015_35_1_a0
Pallaschke, Diethard; Pumplün, Dieter. Spaces of Lipschitz functions on metric spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/

[1] R.F. Arens and J. Eells, Jr, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. doi: 10.2140/pjm.1956.6.397

[2] H. Bauer, Wahrscheinlichkeitstheorie (5te Auflage), de Gruyter Lehrbuch, Walter de Gruyter Co. (Berlin, 2002).

[3] N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l' analyse, no. 1102. Hermann et Cie. (Paris, 1950).

[4] N. Dunford and J.T. Schwartz, Linear Operators: Part I, Interscience Publishers, Inc. (New York, 1957).

[5] D. Pumplün, Elemente der Kategorientheorie, Hochschultaschenbuch (Spektrum Akademischer Verlag, Heidelberg, Berlin, 1999).

[6] D. Pumplün, The metric completion of convex sets and modules, Result. Math. 41 (2002), 346-360. doi: 10.1007/BF03322777

[7] D. Pumplün, A universal compactification of topological positively convex sets, J. Convex Anal. 18 (4) (2011), 999-1012.

[8] S. Rolewicz, Metric Linear Spaces, PWN - Polish Scientific Publishers, Warszawa and D. Reidel Publishing Company (Dordrecht, 1972).

[9] Z. Semadeni, Banach Spaces of Continuous Functions, Vol. I PWN - Polish Scientific Publishers (Warszawa, 1971).

[10] Z. Semadeni, Some Saks-space dualities in harmonic analysis on commutative semigroups, Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979), 71-87 (North-Holland, Amsterdam-New York, 1980).

[11] D.R. Sherbert, The structure of ideals and point derivations in Banach Algebras of Lipschitz functions, Trans AMS 111 (1964), 240-272. doi: 10.1090/S0002-9947-1964-0161177-1

[12] Nik Weaver, Lipschitz Algebras, World Scientific (Singapore, New Jersey, London, Hong Kong, 1999).

[13] Yau Chuen Wong and Kung Fu Ng, Partially Ordered Topological Vector Spaces, Oxford Mathematical Monographs. Clarendon Press, Oxford, 1973.