Spaces of Lipschitz functions on metric spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 5-23 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
Keywords: categories of Lipschitz spaces, Saks spaces, base normed spaces
@article{DMDICO_2015_35_1_a0,
     author = {Pallaschke, Diethard and Pumpl\"un, Dieter},
     title = {Spaces of {Lipschitz} functions on metric spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {5--23},
     year = {2015},
     volume = {35},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/}
}
TY  - JOUR
AU  - Pallaschke, Diethard
AU  - Pumplün, Dieter
TI  - Spaces of Lipschitz functions on metric spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2015
SP  - 5
EP  - 23
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/
LA  - en
ID  - DMDICO_2015_35_1_a0
ER  - 
%0 Journal Article
%A Pallaschke, Diethard
%A Pumplün, Dieter
%T Spaces of Lipschitz functions on metric spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2015
%P 5-23
%V 35
%N 1
%U http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/
%G en
%F DMDICO_2015_35_1_a0
Pallaschke, Diethard; Pumplün, Dieter. Spaces of Lipschitz functions on metric spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 35 (2015) no. 1, pp. 5-23. http://geodesic.mathdoc.fr/item/DMDICO_2015_35_1_a0/

[1] R.F. Arens and J. Eells, Jr, On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403. doi: 10.2140/pjm.1956.6.397

[2] H. Bauer, Wahrscheinlichkeitstheorie (5te Auflage), de Gruyter Lehrbuch, Walter de Gruyter Co. (Berlin, 2002).

[3] N. Bourbaki, Éléments de mathématique. XI. Première partie: Les structures fondamentales de l' analyse, no. 1102. Hermann et Cie. (Paris, 1950).

[4] N. Dunford and J.T. Schwartz, Linear Operators: Part I, Interscience Publishers, Inc. (New York, 1957).

[5] D. Pumplün, Elemente der Kategorientheorie, Hochschultaschenbuch (Spektrum Akademischer Verlag, Heidelberg, Berlin, 1999).

[6] D. Pumplün, The metric completion of convex sets and modules, Result. Math. 41 (2002), 346-360. doi: 10.1007/BF03322777

[7] D. Pumplün, A universal compactification of topological positively convex sets, J. Convex Anal. 18 (4) (2011), 999-1012.

[8] S. Rolewicz, Metric Linear Spaces, PWN - Polish Scientific Publishers, Warszawa and D. Reidel Publishing Company (Dordrecht, 1972).

[9] Z. Semadeni, Banach Spaces of Continuous Functions, Vol. I PWN - Polish Scientific Publishers (Warszawa, 1971).

[10] Z. Semadeni, Some Saks-space dualities in harmonic analysis on commutative semigroups, Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979), 71-87 (North-Holland, Amsterdam-New York, 1980).

[11] D.R. Sherbert, The structure of ideals and point derivations in Banach Algebras of Lipschitz functions, Trans AMS 111 (1964), 240-272. doi: 10.1090/S0002-9947-1964-0161177-1

[12] Nik Weaver, Lipschitz Algebras, World Scientific (Singapore, New Jersey, London, Hong Kong, 1999).

[13] Yau Chuen Wong and Kung Fu Ng, Partially Ordered Topological Vector Spaces, Oxford Mathematical Monographs. Clarendon Press, Oxford, 1973.