On asymptotics of solutions for a class of functional differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 2, pp. 219-227.

Voir la notice de l'article provenant de la source Library of Science

We define a non-smooth guiding function for a functional differential inclusion and apply it to the study the asymptotic behavior of its solutions.
Keywords: asymptotic behavior, functional differential inclusion, integral guiding function, non-smooth guiding function
@article{DMDICO_2014_34_2_a4,
     author = {Kornev, Sergei and Obukhovskii, Valeri and Yao, Jen-Chih},
     title = {On asymptotics of solutions for a class of functional differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {219--227},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     zbl = {1315.34072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_2_a4/}
}
TY  - JOUR
AU  - Kornev, Sergei
AU  - Obukhovskii, Valeri
AU  - Yao, Jen-Chih
TI  - On asymptotics of solutions for a class of functional differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2014
SP  - 219
EP  - 227
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_2_a4/
LA  - en
ID  - DMDICO_2014_34_2_a4
ER  - 
%0 Journal Article
%A Kornev, Sergei
%A Obukhovskii, Valeri
%A Yao, Jen-Chih
%T On asymptotics of solutions for a class of functional differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2014
%P 219-227
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2014_34_2_a4/
%G en
%F DMDICO_2014_34_2_a4
Kornev, Sergei; Obukhovskii, Valeri; Yao, Jen-Chih. On asymptotics of solutions for a class of functional differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 2, pp. 219-227. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_2_a4/

[1] A.V. Arutyunov and V.I. Blagodatskikh, The maximum principle for differential inclusions with phase constraints, (Russian) Trudy Mat. Inst. Steklov 200 (1991) 4-26; translation in Proc. Steklov Inst. Math. 1993, no. 2 (200), 3-25.

[2] A.V. Arutyunov, S.M. Aseev and V.I. Blagodatskikh, Necessary conditions of the first order in a problem of the optimal control of a differential inclusion with phase constraints, (Russian) Mat. Sb. 184 (6) (1993) 3-32; translation in Russian Acad. Sci. Sb. Math. 79 (1994), no. 1, 117-139.

[3] J.-P. Aubin and A. Cellina, Differential Inclusions, Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264 (Springer-Verlag, Berlin, 1984).

[4] C. Avramescu, Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions, Electronic Journal of Qualitive Theory of Differential Equations, no. 13 (2003) 1-9.

[5] C. Avramescu, Existence problems for homoclinic solutions, Abstract and Applied Analysis 7 (1) (2002) 1-29. doi: 10.1155/S108533750200074X

[6] C. Avramescu, Evanescent solutions of linear ordinary differential equations, Electronic Journal of Qualitive Theory of Differential Equations, no. 9 (2002) 1-12. doi: 10.1076/opep.9.1.1.1715

[7] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis and V.V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, (Russian) Librokom, Moscow, 2011.

[8] F.H. Clarke, Optimization and Nonsmooth Analysis, Second edition, Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.

[9] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Second edition. Topological Fixed Point Theory and Its Applications, 4 (Springer, Dordrecht, 2006).

[10] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7 (Walter de Gruyter, Berlin-New York, 2001).

[11] N. Kikuchi, On control problems for functional-differential equations, Funkcial. Ekvac. 14 (1971) 1-23.

[12] M. Kisielewicz, Differential Inclusions and Optimal Control (Kluwer, Dordrecht: PWN Polish Scientific Publishers, Warsaw, 1991).

[13] S.V. Kornev and V.V. Obukhovskii, On nonsmooth multivalent guiding functions, (Russian) Differ. Uravn. 39 (11) (2003), 1497-1502, 1581; translation in Differ. Eq. 39 (11) (2003) 1578-1584.

[14] S. Kornev and V. Obukhovskii, On some developments of the method of integral guiding functions, Functional Differ. Eq. 12 (3-4) (2005) 303-310.

[15] M.A. Krasnosel'skii, The Operator of Translation Along the Trajectories of Differential Equations, Translations of Mathematical Monographs, Vol. 19 (American Mathematical Society, Providence, R.I., 1968).

[16] M.A. Krasnosel'skii and A.I. Perov, On a certain principle of existence of bounded, periodic and almost periodic solutions of systems of ordinary differential equations, (Russian) Dokl. Akad. Nauk SSSR 123 (1958) 235-238.

[17] V.V. Obukhovskii, Semilinear functional-differential inclusions in a Banach space and controlled parabolic systems, Soviet J. Automat. Inform. Sci. 24 (3) (1991) 71-79 (1992); translated from Avtomatika 1991, no. 3, 73-81.

[18] V. Obukhovskii, P. Zecca, N.V. Loi and S. Kornev, Method of Guiding Functions in Problems of Nonlinear Analysis, Lecture Notes in Math. 2076 (Berlin, Springer, 2013).