Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2014_34_1_a6, author = {Kisielewicz, Micha{\l}}, title = {Properties of generalized set-valued stochastic integrals}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {131--147}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, zbl = {1329.60163}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a6/} }
TY - JOUR AU - Kisielewicz, Michał TI - Properties of generalized set-valued stochastic integrals JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2014 SP - 131 EP - 147 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a6/ LA - en ID - DMDICO_2014_34_1_a6 ER -
%0 Journal Article %A Kisielewicz, Michał %T Properties of generalized set-valued stochastic integrals %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2014 %P 131-147 %V 34 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a6/ %G en %F DMDICO_2014_34_1_a6
Kisielewicz, Michał. Properties of generalized set-valued stochastic integrals. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 131-147. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a6/
[1] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977) 149-182. doi: 10.1016/0047-259X(77)90037-9
[2] W. Hildenbrand, Core and Equilibria of a Large Economy (Princeton University Press, 1974).
[3] Sh. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis I, (Kluwer Academic Publishers, 1997). doi: 10.1007/978-1-4615-6359-4
[4] E.J. Jung and J.H. Kim, On the set-valued stochastic integrals, Stoch. Anal. Appl. 21 (2)(2003) 401-418. doi: 10.1081/SAP-120019292
[5] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. 15 (1995) 61-74.
[6] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Stoch. Anal. Appl. 15 (5) (1997) 783-800. doi: 10.1080/07362999708809507
[7] M. Kisielewicz, Some properties of set-valued stochastic integrals, J. Math. Anal. Appl. 388 (2012) 984-995. doi: 10.1016/j.jmaa.2011.10.050
[8] M. Kisielewicz, Stochastic Differential Inclusions and Applications (Springer, New York, 2013). doi: 10.1007/978-1-4614-6756-4
[9] M. Kisielewicz, Some properties of set-valued stochastic integrals of multiprocesses with finite Castaing representations, Comm. Math. 53 (2) (2013) 213-226.
[10] M. Kisielewicz, Martingale representation theorem for set-valued martingales, J. Math. Anal. Appl. 409 (2014) 111-118. doi: 10.1016/j.jmaa.2013.06.066
[11] M. Michta, Remarks on unboundedness of set-valued Itô stochastic integrals, J. Math. Anal. Appl. (presented to print).