On the solvability of Dirichlet problem for the weighted p-Laplacian
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 89-103.

Voir la notice de l'article provenant de la source Library of Science

In this paper we are concerned with the existence and uniqueness of the weak solution for the weighted p-Laplacian. The purpose of this paper is to discuss in some depth the problem of solvability of Dirichlet problem, therefore all proofs are contained in some detail. The main result of the work is the existence and uniqueness of the weak solution for the Dirichlet problem provided that the weights are bounded. Furthermore, under this assumption the solution belongs to the Sobolev space W₀^1,p(Ω).
Keywords: weighted p-Laplacian, weak solutions, solvability, semi-inner product spaces
@article{DMDICO_2014_34_1_a4,
     author = {Mielczarek, Dominik and Rydlewski, Jerzy and Szlachtowska, Ewa},
     title = {On the solvability of {Dirichlet} problem for the weighted {p-Laplacian}},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {89--103},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     zbl = {1328.35057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a4/}
}
TY  - JOUR
AU  - Mielczarek, Dominik
AU  - Rydlewski, Jerzy
AU  - Szlachtowska, Ewa
TI  - On the solvability of Dirichlet problem for the weighted p-Laplacian
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2014
SP  - 89
EP  - 103
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a4/
LA  - en
ID  - DMDICO_2014_34_1_a4
ER  - 
%0 Journal Article
%A Mielczarek, Dominik
%A Rydlewski, Jerzy
%A Szlachtowska, Ewa
%T On the solvability of Dirichlet problem for the weighted p-Laplacian
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2014
%P 89-103
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a4/
%G en
%F DMDICO_2014_34_1_a4
Mielczarek, Dominik; Rydlewski, Jerzy; Szlachtowska, Ewa. On the solvability of Dirichlet problem for the weighted p-Laplacian. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a4/

[1] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936) 396-414. doi: 10.1090/S0002-9947-1936-1501880-4

[2] P.A. Cojuhari, Generalized Hardy type inequalities and some applications to spectral theory, Operator theory, operator algebras and related topics, Theta Found., Bucharest (1997) 79-99.

[3] P. Cojuhari and A. Gheondea, Closed embeddings of Hilbert spaces. J. Math. Anal. Appl. 369 (2010) 60-75. doi: 10.1016/j.jmaa.2010.02.027

[4] P. Cojuhari and, A. Gheondea, Closely embedded Kreĭn spaces and applications to Dirac operators, J. Math. Anal. Appl. 376 (2) (2011) 540-550. doi: 10.1016/j.jmaa.2010.10.059

[5] J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc. 129 (1961) 436-446. doi: 10.1090/S0002-9947-1967-0217574-1

[6] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947) 265-292. doi: 10.1090/S0002-9947-1947-0021241-4

[7] A. Kufner, Weighted Sobolev Spaces (Teubner-Texte zur Mathematik, Band 31, 1980).

[8] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961) 29-43. doi: 10.1090/S0002-9947-1961-0133024-2

[9] V. Smulian, Sur la dérivabilité de la norme dans l'espace de Banach, Dokl. Akad. Nauk SSSR 27 (1940) 643-648.

[10] E. Szlachtowska, On weak solutions of Dirichlet problem for weighted p-Laplacian, Opuscula Math. 32 (4) (2012) 775-781. doi: 10.7494/OpMath.2012.32.4.775