Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 15-39.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.
Keywords: p(x)-Laplacian, hemivariational inequality, Cerami condition, mountain pass theorem, variable exponent Sobolev space
@article{DMDICO_2014_34_1_a1,
     author = {Barna\'s, Sylwia},
     title = {Existence of a nontrival solution for {Dirichlet} problem involving {p(x)-Laplacian}},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {15--39},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2014},
     zbl = {1331.35349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a1/}
}
TY  - JOUR
AU  - Barnaś, Sylwia
TI  - Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2014
SP  - 15
EP  - 39
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a1/
LA  - en
ID  - DMDICO_2014_34_1_a1
ER  - 
%0 Journal Article
%A Barnaś, Sylwia
%T Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2014
%P 15-39
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a1/
%G en
%F DMDICO_2014_34_1_a1
Barnaś, Sylwia. Existence of a nontrival solution for Dirichlet problem involving p(x)-Laplacian. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 15-39. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a1/

[1] E. Acerbi and G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213-259. doi: 10.1007/s00205-002-0208-7

[2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381. doi: 10.1016/0022-1236(73)90051-7

[3] S. Barnaś, Existence result for hemivariational inequality involving p(x)-Laplacian, Opuscula Math. 32 (2012) 439-454. doi: 10.7494/OpMath.2012.32.3.439

[4] S. Barnaś, Existence result for differential inclusion with p(x)-Laplacian, Schedae Informaticae 21 (2012) 41-55.

[5] K.C. Chang, Critical Point Theory and Applications (Shanghai Scientific and Technology Press, Shanghai, 1996).

[6] K.C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981) 102-129. doi: 10.1016/0022-247X(81)90095-0

[7] Y. Chen, S. Levine and M. Rao, Variable exponent linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) 1383-1406. doi: 10.1137/050624522

[8] F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1993).

[9] G. Dai, Infinitely many solutions for a hemivariational inequality involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009) 186-195. doi: 10.1016/j.na.2008.10.039

[10] L. Diening, P. Hästö, P. Harjulehto and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents (Springer-Verlag, Berlin, 2011). doi: 10.1007/978-3-642-18363-8

[11] X. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. 312 (2005) 464-477. doi: 10.1016/j.jmaa.2005.03.057

[12] X. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Nonlinear Anal. 67 (2007) 2982-2992. doi: 10.1016/j.na.2006.09.052

[13] X. Fan and Q. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1853. doi: 10.1016/S0362-546X(02)00150-5

[14] X. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302 (2005) 306-317. doi: 10.1016/j.jmaa.2003.11.020

[15] X. Fan and D. Zhao, On the generalized Orlicz - Sobolev space $W^{k,p(x)}(Ω)$, J. Gansu Educ. College 12 (1) (1998) 1-6.

[16] X. Fan and D. Zhao, On the spaces $L^{p(x)}(Ω)$ and $W^{m,p(x)}(Ω)$, J. Math. Anal. Appl. 263 (2001) 424-446. doi: 10.1006/jmaa.2000.7617

[17] L. Gasiński and N.S. Papageorgiou, Nonlinear hemivariational inequalities at resonance, Bull. Austr. Math. Soc. 60 (3) (1999) 353-364. doi: 10.1017/S0004972700036546

[18] L. Gasiński and N.S. Papageorgiou, Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance, Proc. Roy. Soc. Edinb. 131A (5) (2001) 1091-1111. doi: 10.1017/S0308210500001281

[19] L. Gasiński and N.S. Papageorgiou, An existance theorem for nonlinear hemivariational inequalities at resonance, Bull. Austr. Math. Soc. 63 (1) (2001) 1-14. doi: 10.1017/S0004972700019067

[20] L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis: Volume 9 (Series in Mathematical Analysis and Applications, 2006).

[21] B. Ge and X. Xue, Multiple solutions for inequality Dirichlet problems by the p(x)-Laplacian, Nonlinear Anal. 11 (2010) 3198-3210. doi: 10.1016/j.nonrwa.2009.11.014

[22] B. Ge, X. Xue and Q. Zhou, The existence of radial solutions for differential inclusion problems in $ℝ^N$ involving the p(x)-Laplacian, Nonlinear Anal. 73 (2010) 622-633. doi: 10.1016/j.na.2010.03.041

[23] Ch. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal. 74 (2011) 2908-2915. doi: 10.1016/j.na.2010.12.013

[24] N. Kourogenic and N.S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, J. Aust. Math. Soc. 69 (2000) 245-271. doi: 10.1017/S1446788700002202

[25] M. Mihǎilescu and V. Rǎdulescu, A multiplicity result for a nonlinear degenerate problem araising in the thory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A 462 (2006) 2625-2641.

[26] M. Ružička, Electrorheological Fluids: Modelling and Mathematical Theory (Springer-Verlag, Berlin, 2000).

[27] Ch. Qian and Z. Shen, Existence and multiplicity of solutions for p(x)-Laplacian equation with nonsmooth potential, Nonlinear Anal. 11 (2010) 106-116. doi: 10.1016/j.nonrwa.2008.10.019

[28] Ch. Qian, Z. Shen and M. Yang, Existence of solutions for p(x)-Laplacian nonhomogeneous Neumann problems with indefinite weight, Nonlinear Anal. 11 (2010) 446-458. doi: 10.1016/j.nonrwa.2008.11.019

[29] Ch. Qian, Z. Shen and J. Zhu, Multiplicity results for a differential inclusion problem with non-standard growth, J. Math. Anal. Appl. 386 (2012) 364-377. doi: 10.1016/j.jmaa.2011.08.015

[30] V. Zikov, Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv. 29 (1987) 33-66. doi: 10.1070/IM1987v029n01ABEH000958