Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2014_34_1_a0, author = {Rom, Celina}, title = {A version of {non-Hamiltonian} {Liouville} equation}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--14}, publisher = {mathdoc}, volume = {34}, number = {1}, year = {2014}, zbl = {1327.34063}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a0/} }
TY - JOUR AU - Rom, Celina TI - A version of non-Hamiltonian Liouville equation JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2014 SP - 5 EP - 14 VL - 34 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a0/ LA - en ID - DMDICO_2014_34_1_a0 ER -
Rom, Celina. A version of non-Hamiltonian Liouville equation. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 34 (2014) no. 1, pp. 5-14. http://geodesic.mathdoc.fr/item/DMDICO_2014_34_1_a0/
[1] Spectral Transform and Solitons: Tools to Slove and Investigate Nonlinear Evotion Equations (New York, North-Holland, 1982)
[2] General solutions to the 2D Liouville equation, Int. J. Engng Sci. 35 (1997) 141-149. doi: 10.1016/S0020-7225(96)00080-8.
[3] Stochastic Liouville equations, J. Math. Phys. 4 (1963) 174-183. doi: 10.1063/1.1703941.
[4] Exact solution for the nonlinear Klein-Gordon and Liouville equations in four - dimensional Euklidean space, J. Math. Phys. 28 (1987) 2317-2322. doi: 10.1063/1.527764.
[5] Mean Value Theorems and Functional Equations (World Scientific Publishing, Singapore, 1998)
[6] Stationary solutions of Liouville equations for non-Hamiltonian systems, Ann. Phys. 316 (2005) 393-413. doi: 10.1016/j.aop.2004.11.001.