Differential inclusions and multivalued integrals
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 171-191.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider the nonlocal (nonstandard) Cauchy problem for differential inclusions in Banach spaces
Keywords: nonlocal Cauchy problem, Aumann integrals, Pettis integrals, Henstock-Kurzweil-Pettis integrals, measure of weak noncompactness
@article{DMDICO_2013_33_2_a3,
     author = {Cicho\'n, Kinga and Cicho\'n, Mieczys{\l}aw and Satco, Bianca},
     title = {Differential inclusions and multivalued integrals},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {171--191},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1298.34110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/}
}
TY  - JOUR
AU  - Cichoń, Kinga
AU  - Cichoń, Mieczysław
AU  - Satco, Bianca
TI  - Differential inclusions and multivalued integrals
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2013
SP  - 171
EP  - 191
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/
LA  - en
ID  - DMDICO_2013_33_2_a3
ER  - 
%0 Journal Article
%A Cichoń, Kinga
%A Cichoń, Mieczysław
%A Satco, Bianca
%T Differential inclusions and multivalued integrals
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2013
%P 171-191
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/
%G en
%F DMDICO_2013_33_2_a3
Cichoń, Kinga; Cichoń, Mieczysław; Satco, Bianca. Differential inclusions and multivalued integrals. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 171-191. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/

[1] A. Amrani, Lemme de Fatou pour l'intégrale de Pettis, Publ. Math. 42 (1998), 67-79. doi: 10.5565/PUBLMAT_42198_02

[2] A. Amrani and Ch. Castaing, Weak compactness in Pettis integration, Bull. Polish Acad. Sci. Math. 45 (1997), 139-150.

[3] A. Amrani, Ch. Castaing and M. Valadier, Convergence in Pettis norm under extreme point condition, preprint Univ. Montpellier II, 1998/09.

[4] G. Anello and P. Cubiotti, Parametrization of Riemann-measurable selections for multifunctions of two variables with applications to differential inclusions, Ann. Polon. Math. 83 (2004), 179-187. doi: 10.4064/ap83-2-8

[5] O. Arino, S. Gautier and J.P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279.

[6] Z. Artstein and J. Burns, Integration of compact set valued functions, Pacific J. Math. 58 (1975), 297-3-7.

[7] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1

[8] D. Azzam-Laouir and I. Boutana, Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces, Electron. J. Differ. Equ. 173 (2007), 1-8.

[9] D. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (2002), 659-693.

[10] J. Banaś and J. Rivero, Measure of weak noncompactness, Ann. Mat. Pura Appl. 125 (1987), 131-143.

[11] B. Cascales and J. Rodrígues, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl. 297 (2004), 540-560. doi: 10.1016/j.jmaa.2004.03.026

[12] B. Cascales, V. Kadets and J. Rodrígues, The Pettis integral for multi-valued functions via single-valued ones, J. Math. Anal. Appl. 332 (2007), 1-10. doi: 10.1016/j.jmaa.2006.10.003

[13] Ch. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM 580, Springer, Berlin, 1977. doi: 10.1007/BFb0087685

[14] S.-N. Chow and J.D. Schuur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133-144. doi: 10.1090/S0002-9947-1973-0324162-8

[15] S.-N. Chow and J.D. Schuur, An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018-1020. doi: 10.1090/S0002-9904-1971-12843-4

[16] K. Cichoń and M. Cichoń, Some applications of nonabsolute integrals in the theory of differential inclusions in Banach spaces, in: Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications 201 (2010), 115-124.

[17] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Differ. Incl. 15 (1995), 5-14.

[18] M. Cichoń, Differential inclusions and abstract control problems, Bull. Austral. Math. Soc. 53 (1996), 109-122. doi: 10.1017/S0004972700016774

[19] M. Cichoń, On some selections of multifunctions, Bul. Stiint. Univ. Baia Mare (B) 16 (2000), 315-322.

[20] M. Cichoń, Convergence theorems for the Henstock-Kurzweil-Pettis integral, Acta Math. Hungar. 92 (2001), 75-82. doi: 10.1023/A:1013756111769

[21] M. Cichoń, I. Kubiaczyk and A. Sikorska, Henstock-Kurzweil and Henstock-Kurzweil-Pettis integrals and some existence theorems, Proc. ISCM Herlany 1999 (2000), 53-56.

[22] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 651-667. doi: 10.1016/j.na.2004.09.041

[23] F. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.

[24] G. Debreu, Integration of correspondences, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probab. 1965/66, Berkeley, 1967, pp. 351-372.

[25] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Zeit. 66 (1956), 173-188. doi: 10.1007/BF01186606

[26] L. Di Piazza and K. Musiał, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005), 167-179. doi: 10.1007/s11228-004-0934-0

[27] L. Di Piazza and K. Musiał, A decomposition theorem for compact-valued Henstock integral, Monatsh. Math. 148 (2006), 119-126. doi: 10.1007/s00605-005-0376-2

[28] K. El Amri and Ch. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329-360. doi: 10.1023/A:1026547222209

[29] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58. doi: 10.2989/16073600609486148

[30] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, AMS, Providence, Rhode Island, 1994.

[31] Ch. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 226-249. doi: 10.1016/0022-247X(90)90275-K

[32] Ch. Hess and H. Ziat, Théorème de Komlós pour des multifunctions intégrable au sens de Pettis et applications, Ann. Sci. Math. Québec 26 (2002), 181-198.

[33] M. Hukuhara, Intégration des applications measurable dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.

[34] J. Jarnik and J. Kurzweil, Integral of multivalued mappings and its connection with differential relations, Časopis pro peštováni matematiky 108 (1983), 8-28.

[35] T. Maruyama, A generalization of the weak convergence theorem in Sobolev spaces with application to differential inclusions in a Banach space, Proc. Japan Acad. (A) Math Sci. 77 (2001), 5-10.

[36] K. Musiał, Topics in the theory of Pettis integration, in: School of Measure theory and Real Analysis, Grado, Italy, May 1992.

[37] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. doi: 10.1090/S0002-9947-1938-1501970-8

[38] J. Saint-Raymond, Riemann-measurable selections, Set-Valued Anal. 2 (1994), 481-485. doi: 10.1007/BF01026836

[39] B. Satco, Existence results for Urysohn integral inclusions involving the Henstock integral, J. Math. Anal. Appl. 336 (2007), 44-53. doi: 10.1016/j.jmaa.2007.02.050

[40] B. Satco, A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications, Czechoslovak Math. J. 56 (2006), 1029-1047. doi: 10.1007/s10587-006-0078-5

[41] B. Satco, Volterra integral inclusions via Henstock-Kurzweil-Pettis integral, Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87-101. doi: 10.7151/dmdico.1066

[42] B. Satco, Second order three boundary value problem in Banach spaces via Henstock and Henstock-Kurzweil-Pettis integral, J. Math. Anal. Appl. 332 (2007), 919-933. doi: 10.1016/j.jmaa.2006.10.081

[43] M. Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier 32 (1982), 39-69. doi: 10.5802/aif.859

[44] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex spaces. I. Existence of solutions, Differ. Urav. 17 (1981), 651-659 (in Russian).

[45] M. Valadier, On the Strassen theorem, in: Lect. Notes in Econ. Math. Syst. 102 203-215, ed. J.-P. Aubin, Springer, Berlin, 1974.

[46] H. Ziat, Convergence theorems for Pettis integrable multifunctions, Bull. Polish Acad. Sci. Math. 45 (1997), 123-137.