Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2013_33_2_a3, author = {Cicho\'n, Kinga and Cicho\'n, Mieczys{\l}aw and Satco, Bianca}, title = {Differential inclusions and multivalued integrals}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {171--191}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, zbl = {1298.34110}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/} }
TY - JOUR AU - Cichoń, Kinga AU - Cichoń, Mieczysław AU - Satco, Bianca TI - Differential inclusions and multivalued integrals JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2013 SP - 171 EP - 191 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/ LA - en ID - DMDICO_2013_33_2_a3 ER -
%0 Journal Article %A Cichoń, Kinga %A Cichoń, Mieczysław %A Satco, Bianca %T Differential inclusions and multivalued integrals %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2013 %P 171-191 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/ %G en %F DMDICO_2013_33_2_a3
Cichoń, Kinga; Cichoń, Mieczysław; Satco, Bianca. Differential inclusions and multivalued integrals. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 171-191. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a3/
[1] A. Amrani, Lemme de Fatou pour l'intégrale de Pettis, Publ. Math. 42 (1998), 67-79. doi: 10.5565/PUBLMAT_42198_02
[2] A. Amrani and Ch. Castaing, Weak compactness in Pettis integration, Bull. Polish Acad. Sci. Math. 45 (1997), 139-150.
[3] A. Amrani, Ch. Castaing and M. Valadier, Convergence in Pettis norm under extreme point condition, preprint Univ. Montpellier II, 1998/09.
[4] G. Anello and P. Cubiotti, Parametrization of Riemann-measurable selections for multifunctions of two variables with applications to differential inclusions, Ann. Polon. Math. 83 (2004), 179-187. doi: 10.4064/ap83-2-8
[5] O. Arino, S. Gautier and J.P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279.
[6] Z. Artstein and J. Burns, Integration of compact set valued functions, Pacific J. Math. 58 (1975), 297-3-7.
[7] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. doi: 10.1016/0022-247X(65)90049-1
[8] D. Azzam-Laouir and I. Boutana, Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces, Electron. J. Differ. Equ. 173 (2007), 1-8.
[9] D. Azzam, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Well-posedness in optimization and related topics, Control Cybernet. 31 (2002), 659-693.
[10] J. Banaś and J. Rivero, Measure of weak noncompactness, Ann. Mat. Pura Appl. 125 (1987), 131-143.
[11] B. Cascales and J. Rodrígues, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl. 297 (2004), 540-560. doi: 10.1016/j.jmaa.2004.03.026
[12] B. Cascales, V. Kadets and J. Rodrígues, The Pettis integral for multi-valued functions via single-valued ones, J. Math. Anal. Appl. 332 (2007), 1-10. doi: 10.1016/j.jmaa.2006.10.003
[13] Ch. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM 580, Springer, Berlin, 1977. doi: 10.1007/BFb0087685
[14] S.-N. Chow and J.D. Schuur, Fundamental theory of contingent differential equations in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 133-144. doi: 10.1090/S0002-9947-1973-0324162-8
[15] S.-N. Chow and J.D. Schuur, An existence theorem for ordinary differential equations in Banach spaces, Bull. Amer. Math. Soc. 77 (1971), 1018-1020. doi: 10.1090/S0002-9904-1971-12843-4
[16] K. Cichoń and M. Cichoń, Some applications of nonabsolute integrals in the theory of differential inclusions in Banach spaces, in: Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications 201 (2010), 115-124.
[17] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Differ. Incl. 15 (1995), 5-14.
[18] M. Cichoń, Differential inclusions and abstract control problems, Bull. Austral. Math. Soc. 53 (1996), 109-122. doi: 10.1017/S0004972700016774
[19] M. Cichoń, On some selections of multifunctions, Bul. Stiint. Univ. Baia Mare (B) 16 (2000), 315-322.
[20] M. Cichoń, Convergence theorems for the Henstock-Kurzweil-Pettis integral, Acta Math. Hungar. 92 (2001), 75-82. doi: 10.1023/A:1013756111769
[21] M. Cichoń, I. Kubiaczyk and A. Sikorska, Henstock-Kurzweil and Henstock-Kurzweil-Pettis integrals and some existence theorems, Proc. ISCM Herlany 1999 (2000), 53-56.
[22] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 651-667. doi: 10.1016/j.na.2004.09.041
[23] F. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.
[24] G. Debreu, Integration of correspondences, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probab. 1965/66, Berkeley, 1967, pp. 351-372.
[25] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Zeit. 66 (1956), 173-188. doi: 10.1007/BF01186606
[26] L. Di Piazza and K. Musiał, Set-valued Kurzweil-Henstock-Pettis integral, Set-Valued Anal. 13 (2005), 167-179. doi: 10.1007/s11228-004-0934-0
[27] L. Di Piazza and K. Musiał, A decomposition theorem for compact-valued Henstock integral, Monatsh. Math. 148 (2006), 119-126. doi: 10.1007/s00605-005-0376-2
[28] K. El Amri and Ch. Hess, On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), 329-360. doi: 10.1023/A:1026547222209
[29] C. Godet-Thobie and B. Satco, Decomposability and uniform integrability in Pettis integration, Quaest. Math. 29 (2006), 39-58. doi: 10.2989/16073600609486148
[30] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, AMS, Providence, Rhode Island, 1994.
[31] Ch. Hess, Measurability and integrability of the weak upper limit of a sequence of multifunctions, J. Math. Anal. Appl. 153 (1990), 226-249. doi: 10.1016/0022-247X(90)90275-K
[32] Ch. Hess and H. Ziat, Théorème de Komlós pour des multifunctions intégrable au sens de Pettis et applications, Ann. Sci. Math. Québec 26 (2002), 181-198.
[33] M. Hukuhara, Intégration des applications measurable dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.
[34] J. Jarnik and J. Kurzweil, Integral of multivalued mappings and its connection with differential relations, Časopis pro peštováni matematiky 108 (1983), 8-28.
[35] T. Maruyama, A generalization of the weak convergence theorem in Sobolev spaces with application to differential inclusions in a Banach space, Proc. Japan Acad. (A) Math Sci. 77 (2001), 5-10.
[36] K. Musiał, Topics in the theory of Pettis integration, in: School of Measure theory and Real Analysis, Grado, Italy, May 1992.
[37] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. doi: 10.1090/S0002-9947-1938-1501970-8
[38] J. Saint-Raymond, Riemann-measurable selections, Set-Valued Anal. 2 (1994), 481-485. doi: 10.1007/BF01026836
[39] B. Satco, Existence results for Urysohn integral inclusions involving the Henstock integral, J. Math. Anal. Appl. 336 (2007), 44-53. doi: 10.1016/j.jmaa.2007.02.050
[40] B. Satco, A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integral and applications, Czechoslovak Math. J. 56 (2006), 1029-1047. doi: 10.1007/s10587-006-0078-5
[41] B. Satco, Volterra integral inclusions via Henstock-Kurzweil-Pettis integral, Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87-101. doi: 10.7151/dmdico.1066
[42] B. Satco, Second order three boundary value problem in Banach spaces via Henstock and Henstock-Kurzweil-Pettis integral, J. Math. Anal. Appl. 332 (2007), 919-933. doi: 10.1016/j.jmaa.2006.10.081
[43] M. Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier 32 (1982), 39-69. doi: 10.5802/aif.859
[44] A.A. Tolstonogov, On comparison theorems for differential inclusions in locally convex spaces. I. Existence of solutions, Differ. Urav. 17 (1981), 651-659 (in Russian).
[45] M. Valadier, On the Strassen theorem, in: Lect. Notes in Econ. Math. Syst. 102 203-215, ed. J.-P. Aubin, Springer, Berlin, 1974.
[46] H. Ziat, Convergence theorems for Pettis integrable multifunctions, Bull. Polish Acad. Sci. Math. 45 (1997), 123-137.