Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 115-133.

Voir la notice de l'article provenant de la source Library of Science

Applying two three critical points theorems, we prove the existence of at least three anti-periodic solutions for a second-order impulsive differential inclusion with a perturbed nonlinearity and two parameters.
Keywords: differential inclusion, impulsive, anti-periodic solution, non-smooth critical point theory
@article{DMDICO_2013_33_2_a0,
     author = {Heidarkhani, S. and Afrouzi, G. and Hadjian, A.},
     title = {Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {115--133},
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2013},
     zbl = {1302.34032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/}
}
TY  - JOUR
AU  - Heidarkhani, S.
AU  - Afrouzi, G.
AU  - Hadjian, A.
TI  - Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2013
SP  - 115
EP  - 133
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/
LA  - en
ID  - DMDICO_2013_33_2_a0
ER  - 
%0 Journal Article
%A Heidarkhani, S.
%A Afrouzi, G.
%A Hadjian, A.
%T Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2013
%P 115-133
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/
%G en
%F DMDICO_2013_33_2_a0
Heidarkhani, S.; Afrouzi, G.; Hadjian, A. Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 115-133. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/

[1] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Diff. Equ. 244 (2008), 3031-3059. doi: 10.1016/j.jde.2008.02.025

[2] G. Bonanno and S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1-10. doi: 10.1080/00036810903397438

[3] H.L. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996), 32-39.

[4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[5] F.J. Delvos and L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT, 39 (1999), 439-450. doi: 10.1023/A:1022314518264

[6] P. Djakov and B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory, 135 (2005), 70-104. doi: 10.1016/j.jat.2005.03.004

[7] L.H. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rocky Mountain J. Math. 22 (1992), 519-539. doi: 10.1216/rmjm/1181072746

[8] M. Frigon and D. O'Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739. doi: 10.1006/jmaa.1999.6336

[9] A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Anal. 72 (2010), 1319-1338. doi: 10.1016/j.na.2009.08.001

[10] A. Iannizzotto, Three periodic solutions for an ordinary differential inclusion with two parameters, Ann. Polon. Math. 103 (2012), 89-100. doi: 10.4064/ap103-1-7

[11] A. Kristály, Infinitely many solutions for a differential inclusion problem in $ℝ^N$, J. Diff. Equ. 220 (2006), 511-530. doi: 10.1016/j.jde.2005.02.007

[12] A. Kristály, W. Marzantowicz and C. Varga, A non-smooth three critical points theorem with applications in differential inclusions, J. Glob. Optim. 46 (2010), 49-62. doi: 10.1007/s10898-009-9408-0

[13] S.A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Diff. Equ. 182 (2002), 108-120. doi: 10.1006/jdeq.2001.4092

[14] D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, 1999.

[15] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410. doi: 10.1016/S0377-0427(99)00269-1

[16] Y. Tian and J. Henderson, Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory, Nonlinear Anal. 75 (2012), 6496-6505. doi: 10.1016/j.na.2012.07.025