Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2013_33_2_a0, author = {Heidarkhani, S. and Afrouzi, G. and Hadjian, A.}, title = {Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {115--133}, publisher = {mathdoc}, volume = {33}, number = {2}, year = {2013}, zbl = {1302.34032}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/} }
TY - JOUR AU - Heidarkhani, S. AU - Afrouzi, G. AU - Hadjian, A. TI - Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2013 SP - 115 EP - 133 VL - 33 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/ LA - en ID - DMDICO_2013_33_2_a0 ER -
%0 Journal Article %A Heidarkhani, S. %A Afrouzi, G. %A Hadjian, A. %T Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2013 %P 115-133 %V 33 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/ %G en %F DMDICO_2013_33_2_a0
Heidarkhani, S.; Afrouzi, G.; Hadjian, A. Existence of three anti-periodic solutions for second-order impulsive differential inclusions with two parameters. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 2, pp. 115-133. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_2_a0/
[1] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Diff. Equ. 244 (2008), 3031-3059. doi: 10.1016/j.jde.2008.02.025
[2] G. Bonanno and S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1-10. doi: 10.1080/00036810903397438
[3] H.L. Chen, Antiperiodic wavelets, J. Comput. Math. 14 (1996), 32-39.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[5] F.J. Delvos and L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT, 39 (1999), 439-450. doi: 10.1023/A:1022314518264
[6] P. Djakov and B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Theory, 135 (2005), 70-104. doi: 10.1016/j.jat.2005.03.004
[7] L.H. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rocky Mountain J. Math. 22 (1992), 519-539. doi: 10.1216/rmjm/1181072746
[8] M. Frigon and D. O'Regan, First order impulsive initial and periodic problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739. doi: 10.1006/jmaa.1999.6336
[9] A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Anal. 72 (2010), 1319-1338. doi: 10.1016/j.na.2009.08.001
[10] A. Iannizzotto, Three periodic solutions for an ordinary differential inclusion with two parameters, Ann. Polon. Math. 103 (2012), 89-100. doi: 10.4064/ap103-1-7
[11] A. Kristály, Infinitely many solutions for a differential inclusion problem in $ℝ^N$, J. Diff. Equ. 220 (2006), 511-530. doi: 10.1016/j.jde.2005.02.007
[12] A. Kristály, W. Marzantowicz and C. Varga, A non-smooth three critical points theorem with applications in differential inclusions, J. Glob. Optim. 46 (2010), 49-62. doi: 10.1007/s10898-009-9408-0
[13] S.A. Marano and D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian, J. Diff. Equ. 182 (2002), 108-120. doi: 10.1006/jdeq.2001.4092
[14] D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, 1999.
[15] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), 401-410. doi: 10.1016/S0377-0427(99)00269-1
[16] Y. Tian and J. Henderson, Three anti-periodic solutions for second-order impulsive differential inclusions via nonsmooth critical point theory, Nonlinear Anal. 75 (2012), 6496-6505. doi: 10.1016/j.na.2012.07.025