Existence and controllability of fractional-order impulsive stochastic system with infinite delay
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 1, pp. 65-87.

Voir la notice de l'article provenant de la source Library of Science

This paper is concerned with the existence and approximate controllability for impulsive fractional-order stochastic infinite delay integro-differential equations in Hilbert space. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of impulsive fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate the obtained theory.
Keywords: existence result, approximate controllability, fractional stochastic differential equations, resolvent operators, infinite delay
@article{DMDICO_2013_33_1_a4,
     author = {Guendouzi, Toufik},
     title = {Existence and controllability of fractional-order impulsive stochastic system with infinite delay},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {65--87},
     publisher = {mathdoc},
     volume = {33},
     number = {1},
     year = {2013},
     zbl = {1298.34151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/}
}
TY  - JOUR
AU  - Guendouzi, Toufik
TI  - Existence and controllability of fractional-order impulsive stochastic system with infinite delay
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2013
SP  - 65
EP  - 87
VL  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/
LA  - en
ID  - DMDICO_2013_33_1_a4
ER  - 
%0 Journal Article
%A Guendouzi, Toufik
%T Existence and controllability of fractional-order impulsive stochastic system with infinite delay
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2013
%P 65-87
%V 33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/
%G en
%F DMDICO_2013_33_1_a4
Guendouzi, Toufik. Existence and controllability of fractional-order impulsive stochastic system with infinite delay. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 1, pp. 65-87. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/

[1] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Diff. Equ. 246 (2009), 3834-3863. doi: 10.1016/j.jde.2009.03.004

[2] P. Balasubramaniam, S.K. Ntouyas and D. Vinayagam, Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space, J. Math. Anal. Appl. 305 (2005) 438-451. doi: 10.1016/j.jmaa.2004.10.063

[3] J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ. 20 (2011). Article ID 793023.

[4] X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dynam. Control Syst. 15 (2009) 425-443. doi: 10.1007/s10883-009-9068-x

[5] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.

[6] J. Klamka, Constrained controllability of nonlinear systems, J. Math. Anal. and Appl. 201 (2) (1996), 365-374. doi: 10.1006/jmaa.1996.0260

[7] J. Klamka, Constrained approximate boundary controllability, IEEE Transactions on Automatic Control AC-42 (2) (1997), 280-284. doi: 10.1109/9.554411

[8] J. Klamka, Schauder fixed point theorem in nonlinear controllability problems, Control Cybernet. 29 (2000), 153-165.

[9] J. Klamka, Constrained exact controllability of semilinear systems, Systems and Control Letters 4 (2) (2002), 139-147. doi: 10.1016/S0167-6911(02)00184-6

[10] J. Klamka, Stochastic controllability of systems with multiple delays in control, Int. J. Applied Math. Computer Sci. 19 (2009), 39-47. doi: 10.2478/v10006-009-0003-9

[11] J. Klamka, Constrained controllability of semilinear systems with delays, Nonlinear Dynamics 56 (2009), 169-177. doi: 10.1007/s11071-008-9389-4

[12] N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim. 42 (2003), 1604-1622. doi: 10.1137/S0363012901391688

[13] N.I. Mahmudov and A. Denker, On controllability of linear stochastic systems, Int. J. Control 73 (2000), 144-151. doi: 10.1080/002071700219849

[14] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons, New York, 1993.

[15] P. Muthukumar and P. Balasubramaniam, Approximate controllability of mixed stochastic Volterra-Fredholm type integrodifferential systems in Hilbert space, J. Franklin Inst. 348 (2011), 2911-2922. doi: 10.1016/j.jfranklin.2011.10.001

[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[17] Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. Optim. Theory Appl. 149 (2011), 315-331. doi: 10.1007/s10957-010-9792-0

[18] J. Sabatier, O.P. Agrawal and J.A. Tenreiro-Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, New York, 2007. doi: 10.1007/978-1-4020-6042-7

[19] R. Sakthivel and E. R. Anandhi, Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. Control. 83 (2010), 387-393. doi: 10.1080/00207170903171348

[20] R. Sakthivel, Y. Ren and N.I. Mahmudov, Approximate controllability of second-order stochastic differential equation with impulsive effects, Modern Phys. Lett. (B) 24 (2010), 1559-1572. doi: 10.1142/S0217984910023359

[21] R. Sakthivel, J.J. Nieto and N.I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay, Taiwanese J. Math. 14 (2010), 1777-1797.

[22] R. Sakthivel, S. Suganya and S.M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Computers Mathematics with Applications 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024

[23] R. Sakthivel, P. Revathi and Yong Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlin. Anal. (2012). doi: 10.1016/j.na.2012.10.009.

[24] L. Shen and J. Sun, Relative controllability of stochastic nonlinear systems with delay in control, Nonlin. Anal. RWA 13 (2012), 2880-2887. doi: 10.1016/j.nonrwa.2012.04.017

[25] X.B. Shu, Y. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlin. Anal. TMA 74 (2011), 2003-2011. doi: 10.1016/j.na.2010.11.007

[26] L.W. Wang, Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl. 143 (2009), 185-206. doi: 10.1007/s10957-009-9545-0