Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2013_33_1_a4, author = {Guendouzi, Toufik}, title = {Existence and controllability of fractional-order impulsive stochastic system with infinite delay}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {65--87}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, zbl = {1298.34151}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/} }
TY - JOUR AU - Guendouzi, Toufik TI - Existence and controllability of fractional-order impulsive stochastic system with infinite delay JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2013 SP - 65 EP - 87 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/ LA - en ID - DMDICO_2013_33_1_a4 ER -
%0 Journal Article %A Guendouzi, Toufik %T Existence and controllability of fractional-order impulsive stochastic system with infinite delay %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2013 %P 65-87 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/ %G en %F DMDICO_2013_33_1_a4
Guendouzi, Toufik. Existence and controllability of fractional-order impulsive stochastic system with infinite delay. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 1, pp. 65-87. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a4/
[1] N. Abada, M. Benchohra and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Diff. Equ. 246 (2009), 3834-3863. doi: 10.1016/j.jde.2009.03.004
[2] P. Balasubramaniam, S.K. Ntouyas and D. Vinayagam, Existence of solutions of semilinear stochastic delay evolution inclusions in a Hilbert space, J. Math. Anal. Appl. 305 (2005) 438-451. doi: 10.1016/j.jmaa.2004.10.063
[3] J. Dabas, A. Chauhan and M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, Int. J. Differ. Equ. 20 (2011). Article ID 793023.
[4] X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dynam. Control Syst. 15 (2009) 425-443. doi: 10.1007/s10883-009-9068-x
[5] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V, Amsterdam, 2006.
[6] J. Klamka, Constrained controllability of nonlinear systems, J. Math. Anal. and Appl. 201 (2) (1996), 365-374. doi: 10.1006/jmaa.1996.0260
[7] J. Klamka, Constrained approximate boundary controllability, IEEE Transactions on Automatic Control AC-42 (2) (1997), 280-284. doi: 10.1109/9.554411
[8] J. Klamka, Schauder fixed point theorem in nonlinear controllability problems, Control Cybernet. 29 (2000), 153-165.
[9] J. Klamka, Constrained exact controllability of semilinear systems, Systems and Control Letters 4 (2) (2002), 139-147. doi: 10.1016/S0167-6911(02)00184-6
[10] J. Klamka, Stochastic controllability of systems with multiple delays in control, Int. J. Applied Math. Computer Sci. 19 (2009), 39-47. doi: 10.2478/v10006-009-0003-9
[11] J. Klamka, Constrained controllability of semilinear systems with delays, Nonlinear Dynamics 56 (2009), 169-177. doi: 10.1007/s11071-008-9389-4
[12] N.I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim. 42 (2003), 1604-1622. doi: 10.1137/S0363012901391688
[13] N.I. Mahmudov and A. Denker, On controllability of linear stochastic systems, Int. J. Control 73 (2000), 144-151. doi: 10.1080/002071700219849
[14] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley Sons, New York, 1993.
[15] P. Muthukumar and P. Balasubramaniam, Approximate controllability of mixed stochastic Volterra-Fredholm type integrodifferential systems in Hilbert space, J. Franklin Inst. 348 (2011), 2911-2922. doi: 10.1016/j.jfranklin.2011.10.001
[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[17] Y. Ren, Q. Zhou and L. Chen, Existence, uniqueness and stability of mild solutions for time-dependent stochastic evolution equations with Poisson jumps and infinite delay, J. Optim. Theory Appl. 149 (2011), 315-331. doi: 10.1007/s10957-010-9792-0
[18] J. Sabatier, O.P. Agrawal and J.A. Tenreiro-Machado (Eds.), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, New York, 2007. doi: 10.1007/978-1-4020-6042-7
[19] R. Sakthivel and E. R. Anandhi, Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. Control. 83 (2010), 387-393. doi: 10.1080/00207170903171348
[20] R. Sakthivel, Y. Ren and N.I. Mahmudov, Approximate controllability of second-order stochastic differential equation with impulsive effects, Modern Phys. Lett. (B) 24 (2010), 1559-1572. doi: 10.1142/S0217984910023359
[21] R. Sakthivel, J.J. Nieto and N.I. Mahmudov, Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay, Taiwanese J. Math. 14 (2010), 1777-1797.
[22] R. Sakthivel, S. Suganya and S.M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Computers Mathematics with Applications 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024
[23] R. Sakthivel, P. Revathi and Yong Ren, Existence of solutions for nonlinear fractional stochastic differential equations, Nonlin. Anal. (2012). doi: 10.1016/j.na.2012.10.009.
[24] L. Shen and J. Sun, Relative controllability of stochastic nonlinear systems with delay in control, Nonlin. Anal. RWA 13 (2012), 2880-2887. doi: 10.1016/j.nonrwa.2012.04.017
[25] X.B. Shu, Y. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlin. Anal. TMA 74 (2011), 2003-2011. doi: 10.1016/j.na.2010.11.007
[26] L.W. Wang, Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl. 143 (2009), 185-206. doi: 10.1007/s10957-009-9545-0