Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2013_33_1_a2, author = {Nockowska-Rosiak, Magdalena}, title = {A note on variational-type inequalities for (\ensuremath{\eta},\ensuremath{\theta},\ensuremath{\delta})-pseudomonotone-type set-valued mappings in nonreflexive {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {41--45}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, zbl = {1297.49015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a2/} }
TY - JOUR AU - Nockowska-Rosiak, Magdalena TI - A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2013 SP - 41 EP - 45 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a2/ LA - en ID - DMDICO_2013_33_1_a2 ER -
%0 Journal Article %A Nockowska-Rosiak, Magdalena %T A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2013 %P 41-45 %V 33 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a2/ %G en %F DMDICO_2013_33_1_a2
Nockowska-Rosiak, Magdalena. A note on variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 1, pp. 41-45. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a2/
[1] S.-S. Chang, B.-S. Lee and Y.-Q. Chen, Variational inequalities for monotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 8 (6) (1995), 29-34. doi: 10.1016/0893-9659(95)00081-Z
[2] K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. doi: 10.1007/BF01353421
[3] B.-S. Lee and G.-M. Lee, Variational inequalities for (η,θ)-pseudomonotone operators in nonreflexive Banach spaces, Appl. Math. Lett. 12 (5) (1999), 13-17. doi: 10.1016/S0893-9659(99)00050-6
[4] B.-S. Lee, G.-M. Lee and S.-J. Lee, Variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces, Appl. Math. Lett. 15 (1) (2002), 109-114. doi: 10.1016/S0893-9659(01)00101-X
[5] B.-S. Lee and J.-D. Noh, Minty's lemma for (θ,η)-pseudomonotone-type set-valued mappings and applications, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 9 (1) (2002), 47-55.
[6] R.U. Verma, Variational inequalities involving strongly pseudomonotone hemicontinuous mappings in nonreflexive Banach spaces, Appl. Math. Lett. 11 (2) (1998), 41-43. doi: 10.1016/S0893-9659(98)00008-1
[7] P.J. Watson, Variational inequalities in nonreflexive Banach spaces, Appl. Math. Lett. 10 (2) (1997), 45-48. doi: 10.1016/S0893-9659(97)00009-8