Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2013_33_1_a0, author = {Gil', Michael}, title = {Input-to-state stability of neutral type systems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {5--16}, publisher = {mathdoc}, volume = {33}, number = {1}, year = {2013}, zbl = {06238329}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a0/} }
TY - JOUR AU - Gil', Michael TI - Input-to-state stability of neutral type systems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2013 SP - 5 EP - 16 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a0/ LA - en ID - DMDICO_2013_33_1_a0 ER -
Gil', Michael. Input-to-state stability of neutral type systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 33 (2013) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMDICO_2013_33_1_a0/
[1] M. Arcak and A. Teel, Input-to-state stability for a class of Lur'e systems, Automatica 38 (11) (2002), 1945-1949. doi: 10.1016/S0005-1098(02)00100-0
[2] C. Corduneanu, Functional Equations with Causal Operators, Taylor and Francis, London, 2002.
[3] A. Feintuch and R. Saeks, System Theory. A Hilbert Space Approach, Ac. Press, New York, 1982.
[4] T.T. Georgiou and M.C. Smith, Graphs, causality, and stabilizability: linear, shift-invariant systems on L²[0,8), Math. Control Signals Systems 6 (1993), 195-223. doi: 10.1007/BF01211620
[5] M.I. Gil', Stability of Finite and Infinite Dimensional Systems, Kluwer, N.Y, 1998 doi: 10.1007/978-1-4615-5575-9
[6] M.I. Gil', On bounded input-bounded output stability of nonlinear retarded systems, Robust and Nonlinear Control 10 (2000), 1337-1344. doi: 10.1002/1099-1239(20001230)10:151337::AID-RNC543>3.0.CO;2-B
[7] M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, Vol. 1830, Springer-Verlag, Berlin, 2003. doi: 10.1007/b93845
[8] M.I. Gil', Absolute and input-to-state stabilities of nonautonomous systems with causal mappings, Dynamic Systems and Applications 18 (2009) 655-666.
[9] M.I. Gil', L²-absolute and input-to-state stabilities of equations with nonlinear causal mappings, Internat. J. Robust Nonlinear Control 19 (2) (2009), 151-167. doi: 10.1002/rnc.1305
[10] M.I. Gil', Stability of vector functional differential equations: a survey, Quaestiones Mathematicae 35 (2012), 1-49. doi: 10.2989/16073606.2012.671261
[11] M.I. Gil', Exponential stability of nonlinear neutral type systems, Archives of Control Sci 22 (2) (2012), 125-143.
[12] M.I. Gil', Estimates for fundamental solutions of neutral type functional differential equations, Int. J. Dynamical Systems and Differential Equations 4 (4) (2012), 255-273. doi: 10.1504/IJDSDE.2012.049904
[13] V.L. Kharitonov, Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: a single delay case, International Journal of Control 78 (2005), 783-800. doi: 10.1080/00207170500164837
[14] V.B. Kolmanovskii and V.R. Nosov, Stability of Functional Differential Equations, Academic Press, London, 1986.
[15] M. Krichman, E.D. Sontag and Y. Wang, Input-output-to-state stability, SIAM J. Control Optimization 39 (6) (2000), 1874-1928. doi: 10.1137/S0363012999365352
[16] J.-J. Loiseau, M. Cardelli and X. Dusser, Neutral-type time-delay systems that are not formally stable are not BIBO stabilizable, IMA J. Math. Control Inform. 19 (2002), 217-227. doi: 10.1093/imamci/19.1_and_2.217
[17] A.M. Ostrowski, Note on bounds for determinants with dominant principal diagonals, Proc. of AMS 3 (1952), 26-30.
[18] J. Partingtona and C. Bonnetb, $H^∞$ and BIBO stabilization of delay systems of neutral type, Systems Control Letters 52 (2004), 283-288. doi: 10.1016/j.sysconle.2003.09.014
[19] R. Rakkiyappan and P. Balasubramaniam, LMI conditions for global asymptotic stability results for neutral-type neural networks with distributed time delays, Appl. Math. and Comput. 204 (2008), 317-324. doi: 10.1016/j.amc.2008.06.049
[20] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer-Verlag, New York, 1990.