Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2012_32_1_a2, author = {Aitalioubrahim, Myelkebir}, title = {On functional differential inclusions in {Hilbert} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {63--85}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2012}, zbl = {1298.34115}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a2/} }
TY - JOUR AU - Aitalioubrahim, Myelkebir TI - On functional differential inclusions in Hilbert spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2012 SP - 63 EP - 85 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a2/ LA - en ID - DMDICO_2012_32_1_a2 ER -
%0 Journal Article %A Aitalioubrahim, Myelkebir %T On functional differential inclusions in Hilbert spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2012 %P 63-85 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a2/ %G en %F DMDICO_2012_32_1_a2
Aitalioubrahim, Myelkebir. On functional differential inclusions in Hilbert spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 32 (2012) no. 1, pp. 63-85. http://geodesic.mathdoc.fr/item/DMDICO_2012_32_1_a2/
[1] [1] M. Aitalioubrahim and S. Sajid, viability problem with perturbation in Hilbert space, Electron. J. Qual. Theory Differ. Equ. 7 (2007) 1-14.
[2] [2] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4
[3] [3] M. Bounkhel, Existence results of nonconvex differential inclusions, Portugal. Math. 59 (3) (2002) 283-310.
[4] [4] A. Bressan, A. Cellina and G. Colombo, Upper semicontinuous differential inclusions without convexity, Proc. Amer. Math. Soc. 106 (1989) 771-775. doi: 10.1090/S0002-9939-1989-0969314-6
[5] [5] A. Cernea and V. Lupulescu, Viable solutions for a class of nonconvex functional differential inclusions, Math. Reports 7(57) (2) (2005) 91-103.
[6] [6] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley and Sons, 1983.
[7] [7] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
[8] [8] K. Deimling, Multivalued Defferential Equations. De Gruyter Series in Non linear Analysis and Applications, Walter de Gruyter, Berlin, New York, 1992.
[9] [9] A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces, Portugal. Math. 57 Fasc. 2 (2000).
[10] [10] G. Haddad, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. Math. 39 (1981) 83-100. doi: 10.1007/BF02762855
[11] [11]G. Haddad, Monotone trajectories for functional differential inclusions, J. Differential Equations 42 (1981) 1-24. doi: 10.1016/0022-0396(81)90031-0
[12] [12] R.T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canad. J. Math. 39 (1980) 257-280. doi: 10.4153/CJM-1980-020-7
[13] [13] A. Syam, Contributions aux Inclusions Différentielles, Ph. thesis, Université Montpellier II, 1993.