Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_2_a1, author = {Cicho\'n, Mieczys{\l}aw and Metwali, Mohamed}, title = {Monotonic solutions for quadratic integral equations}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {157--171}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2011}, zbl = {1254.45004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/} }
TY - JOUR AU - Cichoń, Mieczysław AU - Metwali, Mohamed TI - Monotonic solutions for quadratic integral equations JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 157 EP - 171 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/ LA - en ID - DMDICO_2011_31_2_a1 ER -
%0 Journal Article %A Cichoń, Mieczysław %A Metwali, Mohamed %T Monotonic solutions for quadratic integral equations %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2011 %P 157-171 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/ %G en %F DMDICO_2011_31_2_a1
Cichoń, Mieczysław; Metwali, Mohamed. Monotonic solutions for quadratic integral equations. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/
[1] G. Anichini and G. Conti, Existence of solutions of some quadratic integral equations, Opuscula Mathematica 28 (2008), 433-440. doi: 10.7151/dmdico.1132
[2] J. Appell and P.P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.
[3] I.K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi: 10.1017/S0004972700009953
[4] J. Banaś, On the superposition operator and integrable solutions of some functional equations, Nonlin. Anal. Th. Meth. Appl. 12 (1988), 777-784. doi: 10.1016/0362-546X(88)90038-7
[5] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Autral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378
[6] J. Banaś and A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. London Math. Soc. 41 (2009), 1073-1084.
[7] J. Banaś and W.G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1992), 133-151. doi: 10.1016/0022-247X(92)90241-5
[8] J. Banaś and W.G. El-Sayed, Solvability of Functional and Integral Equations in some Classes of Integrable Functions, Politechnika Rzeszowska, Rzeszów, 1993.
[9] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes in Math. 60, M. Dekker, New York-Basel, 1980.
[10] J. Banaś, J. Rocha and K.B. Sadarangani, Solvability of a nonlinear integral equation of Volterra type, J. Comp. Appl. Math. 157 (2003), 31-48. doi: 10.1016/S0377-0427(03)00373-X
[11] J. Banaś and B. Rzepka, On existence and asymptotic stability of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), 165-173. empty
[12] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 332 (2007), 1371-1379. doi: 10.1016/j.jmaa.2006.11.008
[13] J. Banaś and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comp. Model. 49 (2009), 488-496. doi: 10.1016/j.mcm.2007.10.021
[14] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi: 10.1006/jmaa.1998.5941
[15] J. Banaś and T. Zając, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5491-5500. doi: 10.1016/j.na.2009.04.037
[16] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (2001), 13-23.
[17] J. Caballero, A.B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electr. J. Differ. Equat. 57 (2006), 1-11.
[18] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1960.
[19] G. Darbo, Punti uniti in trasformazioni a codominio noncompatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
[20] M.A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebra, Commun. Appl. Anal. 11 (2007), 441-450.
[21] M.A. Darwish and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equations, Fract. Calculus Appl. Anal. 12 (2009), 71-86.
[22] M.A. Darwish and S.K. Ntouyas, Monotonic solutions of a perturbed quadratic fractional integral equation, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5513-5521. doi: 10.1016/j.na.2009.04.041
[23] N. Dunford and J. Schwartz, Linear Operators I, Int. Publ., Leyden, 1963.
[24] W.G. El-Sayed and B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comp. Math. Appl. 51 (2006), 1065-1074. doi: 10.1016/j.camwa.2005.08.033
[25] S. Hu, M. Khavani and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis 34 (1989), 261-266. doi: 10.1080/00036818908839899
[26] M.A. Krasnosel'skii, P.P. Zabrejko, J.I. Pustyl'nik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.
[27] M. Väth, A general theorem on continuity and compactness of the Urysohn operator, J. Integral Equations Appl. 8 (1996), 379-389. doi: 10.1216/jiea/1181075958
[28] M. Väth, Continuity of single- and multivalued superposition operators in generalized ideal spaces of measurable functions, Nonlin. Funct. Anal. Appl. 11 (2006), 607-646.
[29] M. Väth, Volterra and Integral Equations of Vector Functions, Marcel Dekker, New York-Basel, 2000.
[30] P.P. Zabrejko, A.I. Koshlev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik and V.J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.