Monotonic solutions for quadratic integral equations
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 157-171.

Voir la notice de l'article provenant de la source Library of Science

Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.
Keywords: integral equation, monotonic solution, measure of noncompactness, Darbo fixed point theorem, superposition operator
@article{DMDICO_2011_31_2_a1,
     author = {Cicho\'n, Mieczys{\l}aw and Metwali, Mohamed},
     title = {Monotonic solutions for quadratic integral equations},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2011},
     zbl = {1254.45004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/}
}
TY  - JOUR
AU  - Cichoń, Mieczysław
AU  - Metwali, Mohamed
TI  - Monotonic solutions for quadratic integral equations
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2011
SP  - 157
EP  - 171
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/
LA  - en
ID  - DMDICO_2011_31_2_a1
ER  - 
%0 Journal Article
%A Cichoń, Mieczysław
%A Metwali, Mohamed
%T Monotonic solutions for quadratic integral equations
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2011
%P 157-171
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/
%G en
%F DMDICO_2011_31_2_a1
Cichoń, Mieczysław; Metwali, Mohamed. Monotonic solutions for quadratic integral equations. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 2, pp. 157-171. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_2_a1/

[1] G. Anichini and G. Conti, Existence of solutions of some quadratic integral equations, Opuscula Mathematica 28 (2008), 433-440. doi: 10.7151/dmdico.1132

[2] J. Appell and P.P. Zabrejko, Continuity properties of the superposition operator, Preprint No. 131, Univ. Augsburg, 1986.

[3] I.K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292. doi: 10.1017/S0004972700009953

[4] J. Banaś, On the superposition operator and integrable solutions of some functional equations, Nonlin. Anal. Th. Meth. Appl. 12 (1988), 777-784. doi: 10.1016/0362-546X(88)90038-7

[5] J. Banaś, Integrable solutions of Hammerstein and Urysohn integral equations, J. Autral. Math. Soc. 46 (1989), 61-68. doi: 10.1017/S1446788700030378

[6] J. Banaś and A. Chlebowicz, On integrable solutions of a nonlinear Volterra integral equation under Carathéodory conditions, Bull. London Math. Soc. 41 (2009), 1073-1084.

[7] J. Banaś and W.G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl. 167 (1992), 133-151. doi: 10.1016/0022-247X(92)90241-5

[8] J. Banaś and W.G. El-Sayed, Solvability of Functional and Integral Equations in some Classes of Integrable Functions, Politechnika Rzeszowska, Rzeszów, 1993.

[9] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes in Math. 60, M. Dekker, New York-Basel, 1980.

[10] J. Banaś, J. Rocha and K.B. Sadarangani, Solvability of a nonlinear integral equation of Volterra type, J. Comp. Appl. Math. 157 (2003), 31-48. doi: 10.1016/S0377-0427(03)00373-X

[11] J. Banaś and B. Rzepka, On existence and asymptotic stability of a nonlinear integral equation, J. Math. Anal. Appl. 284 (2003), 165-173. empty

[12] J. Banaś and B. Rzepka, Monotonic solutions of a quadratic integral equation of fractional order, J. Math. Anal. Appl. 332 (2007), 1371-1379. doi: 10.1016/j.jmaa.2006.11.008

[13] J. Banaś and B. Rzepka, Nondecreasing solutions of a quadratic singular Volterra integral equation, Math. Comp. Model. 49 (2009), 488-496. doi: 10.1016/j.mcm.2007.10.021

[14] J. Banaś, M. Lecko and W.G. El-Sayed, Existence theorems of some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285. doi: 10.1006/jmaa.1998.5941

[15] J. Banaś and T. Zając, Solvability of a functional integral equation of fractional order in the class of functions having limits at infinity, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5491-5500. doi: 10.1016/j.na.2009.04.037

[16] J. Banaś and L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. 41 (2001), 13-23.

[17] J. Caballero, A.B. Mingarelli and K. Sadarangani, Existence of solutions of an integral equation of Chandrasekhar type in the theory of radiative transfer, Electr. J. Differ. Equat. 57 (2006), 1-11.

[18] S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1960.

[19] G. Darbo, Punti uniti in trasformazioni a codominio noncompatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.

[20] M.A. Darwish, On solvability of some quadratic functional-integral equation in Banach algebra, Commun. Appl. Anal. 11 (2007), 441-450.

[21] M.A. Darwish and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equations, Fract. Calculus Appl. Anal. 12 (2009), 71-86.

[22] M.A. Darwish and S.K. Ntouyas, Monotonic solutions of a perturbed quadratic fractional integral equation, Nonlin. Anal. Th. Meth. Appl. 71 (2009), 5513-5521. doi: 10.1016/j.na.2009.04.041

[23] N. Dunford and J. Schwartz, Linear Operators I, Int. Publ., Leyden, 1963.

[24] W.G. El-Sayed and B. Rzepka, Nondecreasing solutions of a quadratic integral equation of Urysohn type, Comp. Math. Appl. 51 (2006), 1065-1074. doi: 10.1016/j.camwa.2005.08.033

[25] S. Hu, M. Khavani and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Analysis 34 (1989), 261-266. doi: 10.1080/00036818908839899

[26] M.A. Krasnosel'skii, P.P. Zabrejko, J.I. Pustyl'nik and P.E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leyden, 1976.

[27] M. Väth, A general theorem on continuity and compactness of the Urysohn operator, J. Integral Equations Appl. 8 (1996), 379-389. doi: 10.1216/jiea/1181075958

[28] M. Väth, Continuity of single- and multivalued superposition operators in generalized ideal spaces of measurable functions, Nonlin. Funct. Anal. Appl. 11 (2006), 607-646.

[29] M. Väth, Volterra and Integral Equations of Vector Functions, Marcel Dekker, New York-Basel, 2000.

[30] P.P. Zabrejko, A.I. Koshlev, M.A. Krasnosel'skii, S.G. Mikhlin, L.S. Rakovshchik and V.J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975.