Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2011_31_1_a5, author = {\'Slosarski, Miros{\l}aw}, title = {Locally admissible multi-valued maps}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {115--132}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2011}, zbl = {1264.55003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a5/} }
TY - JOUR AU - Ślosarski, Mirosław TI - Locally admissible multi-valued maps JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2011 SP - 115 EP - 132 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a5/ LA - en ID - DMDICO_2011_31_1_a5 ER -
Ślosarski, Mirosław. Locally admissible multi-valued maps. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 31 (2011) no. 1, pp. 115-132. http://geodesic.mathdoc.fr/item/DMDICO_2011_31_1_a5/
[1] G.P. Agarwal and D. O'Regan, A note on the Lefschetz fixed point theorem for admissible spaces, Bull. Korean Math. Soc. 42 (2) (2005), 307-313. doi: 10.4134/BKMS.2005.42.2.307
[2] J. Andres and L. Górniewicz, Topological principles for boundary value problems, Kluwer, 2003.
[3] S.A. Bogatyi, Approximative and fundamental retracts, Math. USSR Sb. 22 (1974), 91-103. doi: 10.1070/SM1974v022n01ABEH001687
[4] S. Eilenberg and D. Montomery, Fixed points theorems for multi-valued transformations, Amer. J. Math. 58 (1946), 214-222. doi: 10.2307/2371832
[5] L. Górniewicz, Topological methods in fixed point theory of multi-valued mappings, Springer, 2006.
[6] L. Górniewicz and D. Rozpłoch-Nowakowska, The Lefschetz fixed point theory for morphisms in topological vector spaces, Topological Methods in Nonlinear Analysis, Journal of the Juliusz Schauder Center 20 (2002), 315-333. doi: 10.7151/dmdico.1130
[7] L. Górniewicz and M. Ślosarski, Once more on the Lefschetz fixed point theorem, Bull. Polish Acad. Sci. Math. 55 (2007), 161-170.
[8] L. Górniewicz and M. Ślosarski, Fixed points of mappings in Klee admissible spaces, Control and Cybernetics 36 (3) (2007), 825-832. doi: 10.4064/ba55-2-7
[9] A. Granas, Generalizing the Hopf- Lefschetz fixed point theorem for non-compact ANR's, in: Symp. Inf. Dim. Topol., Baton-Rouge, 1967.
[10] A. Granas and J. Dugundji, Fixed Point Theory, Springer, 2003.
[11] J. Leray and J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. Ecole Norm. Sup. 51 (1934).
[12] H.O. Peitgen, On the Lefschetz number for iterates of continuous mappings, Proc. AMS 54 (1976), 441-444.
[13] R. Skiba and M. Ślosarski, On a generalization of absolute neighborhood retracts, Topology and its Applications 156 (2009), 697-709. doi: 10.1016/j.topol.2008.09.007
[14] M. Ślosarski, On a generalization of approximative absolute neighborhood retracts, Fixed Point Theory 10 (2) (2009), 329-346.
[15] M. Ślosarski, Fixed points of multivalued mappings in Hausdorff topological spaces, Nonlinear Analysis Forum 13 (1) (2008), 39-48.