Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_2_a1, author = {Gawiejnowicz, Stanis{\l}aw and Kurc, Wies{\l}aw and Pankowska, Lidia}, title = {Solving a permutation problem by a fully polynomial-time approximation scheme}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {191--203}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2010}, zbl = {1225.90105}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a1/} }
TY - JOUR AU - Gawiejnowicz, Stanisław AU - Kurc, Wiesław AU - Pankowska, Lidia TI - Solving a permutation problem by a fully polynomial-time approximation scheme JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 191 EP - 203 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a1/ LA - en ID - DMDICO_2010_30_2_a1 ER -
%0 Journal Article %A Gawiejnowicz, Stanisław %A Kurc, Wiesław %A Pankowska, Lidia %T Solving a permutation problem by a fully polynomial-time approximation scheme %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 191-203 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a1/ %G en %F DMDICO_2010_30_2_a1
Gawiejnowicz, Stanisław; Kurc, Wiesław; Pankowska, Lidia. Solving a permutation problem by a fully polynomial-time approximation scheme. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 2, pp. 191-203. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a1/
[1] S. Gawiejnowicz, Time-Dependent Scheduling, Monographs in Theoretical Computer Science: An EATCS Series (Springer, 2008).
[2] S. Gawiejnowicz, W. Kurc and L. Pankowska, A greedy approach for a time-dependent scheduling problem, Lecture Notes in Computer Science 2328 (2002), 79-86.
[3] S. Gawiejnowicz, W. Kurc and L. Pankowska, Analysis of a time-dependent scheduling problem by signatures of deterioration rate sequences, Discrete Appl. Math. 154 (2006), 2150-2166. doi: 10.1016/j.dam.2005.04.016
[4] O.H. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems, Journal of ACM 22 (1975), 463-468. doi: 10.1145/321906.321909
[5] G. Mosheiov, V-shaped policies for scheduling deteriorating jobs, Operations Research 39 (1991), 979-991. doi: 10.1287/opre.39.6.979
[6] G. Woeginger, When does a dynamic programming formulation guarantee the existence of an FPTAS? INFORMS Journal on Computing 12 (2000), 57-73. doi: 10.1287/ijoc.12.1.57.11901