On the existence of five nontrivial solutions for resonant problems with p-Laplacian
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 2, pp. 169-189.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study a nonlinear Dirichlet elliptic differential equation driven by the p-Laplacian and with a nonsmooth potential. The hypotheses on the nonsmooth potential allow resonance with respect to the principal eigenvalue λ₁ > 0 of (-Δₚ,W₀^1,p(Z)). We prove the existence of five nontrivial smooth solutions, two positive, two negative and the fifth nodal.
Keywords: p-Laplacian, Clarke subdifferential, linking sets, upper-lower solutions, second eigenvalue, nodal and constant sign solutions, second deformation theorem
@article{DMDICO_2010_30_2_a0,
     author = {Gasi\'nski, Leszek and Papageorgiou, Nikolaos},
     title = {On the existence of five nontrivial solutions for resonant problems with {p-Laplacian}},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {169--189},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2010},
     zbl = {1216.35035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a0/}
}
TY  - JOUR
AU  - Gasiński, Leszek
AU  - Papageorgiou, Nikolaos
TI  - On the existence of five nontrivial solutions for resonant problems with p-Laplacian
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 169
EP  - 189
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a0/
LA  - en
ID  - DMDICO_2010_30_2_a0
ER  - 
%0 Journal Article
%A Gasiński, Leszek
%A Papageorgiou, Nikolaos
%T On the existence of five nontrivial solutions for resonant problems with p-Laplacian
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 169-189
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a0/
%G en
%F DMDICO_2010_30_2_a0
Gasiński, Leszek; Papageorgiou, Nikolaos. On the existence of five nontrivial solutions for resonant problems with p-Laplacian. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 2, pp. 169-189. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_2_a0/

[1] A. Ambrosetti, J. García Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242. doi: 10.1006/jfan.1996.0045

[2] S. Carl and D. Motreanu, Constant sign and sign-changing solutions for nonlinear eigenvalue problems, doi: 10.1016/j.na.2007.02.013, 2007.

[3] S. Carl and K. Perera, Sign-changing and multiple solutions for the p-Laplacian, Abstr. Appl. Anal. 7 (2002), 613-625.

[4] K.-C. Chang, Infinite-Dimensional Morse Theory and Multiple Solution Problems, volume 6 of Progress in Nonlinear Differential Equations and Their Applications (Birkhäuser Verlag, Boston, MA, 1993).

[5] F.H. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).

[6] M. Cuesta, D. de Figueiredo and J.-P. Gossez, The beginning of the Fučik spectrum for the p-Laplacian, J. Differ. Equ. 159 (1999), 212-238.

[7] N. Dancer and Y. Du, On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal. 56 (1995), 193-206.

[8] N. Dunford and J.T. Schwartz, Linear Operators I, General Theory, volume 7 of Pure and Applied Mathematics (Wiley, New York, 1958).

[9] J. García Azorero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404.

[10] L. Gasiński and N.S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems (Chapman and Hall/CRC Press, Boca Raton, FL, 2005).

[11] L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis (Chapman and Hall/ CRC Press, Boca Raton, FL, 2006).

[12] Q.-S. Jiu and J.-B. Su, Existence and multiplicity results for Dirichlet problems with p-Laplacian, J. Math. Anal. Appl. 281 (2003), 587-601. doi: 10.1016/S0022-247X(03)00165-3

[13] O.A. Ladyzhenskaya and N. Uraltseva, Linear and Quasilinear Elliptic Equations, volume 46 of Mathematics in Science and Engineering (Academic Press, New York, 1968).

[14] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.

[15] J.-Q. Liu and S.-B. Liu, The existence of multiple solutions to quasilinear elliptic equations, Bull. London Math. Soc. 37 (2005), 592-600.

[16] S.-B. Liu, Multiple solutions for coercive p-Laplacian equations, J. Math. Anal. Appl. 316 (2006), 229-236. doi: 10.1016/j.jmaa.2005.04.034

[17] M. Marcus and V.J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), 217-229.

[18] E.H. Papageorgiou and N.S. Papageorgiou, A multiplicity theorem for problems with the p-Laplacian, J. Funct. Anal. 244 (2007), 63-77.

[19] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

[20] Z. Zhang, J.-Q. Chen and S.-J. Li, Construction of pseudo-gradient vector field and sign-changing multiple solutions involving p-Laplacian, J. Differ. Equ. 201 (2004), 287-303.