Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_1_a6, author = {Karpowicz, Adrian}, title = {The existence of {Carath\'eodory} solutions of hyperbolic functional differential equations}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {121--140}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1201.35082}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a6/} }
TY - JOUR AU - Karpowicz, Adrian TI - The existence of Carathéodory solutions of hyperbolic functional differential equations JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 121 EP - 140 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a6/ LA - en ID - DMDICO_2010_30_1_a6 ER -
%0 Journal Article %A Karpowicz, Adrian %T The existence of Carathéodory solutions of hyperbolic functional differential equations %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 121-140 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a6/ %G en %F DMDICO_2010_30_1_a6
Karpowicz, Adrian. The existence of Carathéodory solutions of hyperbolic functional differential equations. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 121-140. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a6/
[1] A. Alexiewicz and W. Orlicz, Some remarks on the existence and uniqueness of solutions of the hyperbolic equation ∂²z/∂x∂y = f(x,y,z,∂z/∂x,∂z/∂y), Stud. Math. 15 (1956), 201-215.
[2] E. Berkson and T.A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321.
[3] T. Człapiński, Hyperbolic functional differential equations, Gdańsk, 1999.
[4] M. Dawidowski, I. Kubiaczyk and B. Rzepecki, An existence theorem for the hyperbolic equation $z_{xy} = f(x,y,z)$ in Banach space, Demonstr. Math. 20 (1987), 489-493.
[5] M. Dawidowski and I. Kubiaczyk, On bounded solutions of hyperbolic differential inclusion in Banach space, Demonstr. Math. 25 (1992), 153-159.
[6] K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260.
[7] B. Palczewski and W. Pawelski, Some remarks on the uniqueness of solutions of the Darboux Problem with conditions of the Krasnoleski-Krein type, Ann. Pol. Math. 14 (1964), 97-100.
[8] A. Pelczar, Some functional differential equations, Diss. Math. 100 (1973), 3-74.
[9] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publisher, cop. 2002.
[10] B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach space, Rend. Semin. Mat.Univ. Padova 76 (1986), 201-206.
[11] J. Simon, Compact sets in the Space $L^{p}(0,T;B)$, Annali di Matematica Pura ed Applicate 146 (1986), 65-96.
[12] J. Straburzyński, The existence of solutions of some functional-differential equations of hyperbolic type, Demonstr. Math. 12 (1979), 105-121.
[13] J. Straburzyński, Existence of solutions of the Goursa problem for some functional-differential equations, Demonstr. Math. 15 (1982), 883-897.
[14] W. Walter, Ordinary functional differential equations and inequalities in the sense of Carathéodory, Appl. Anal. 70 (1998), 85-95.
[15] W. Walter, Differential and Integral Inequalities, Springer, 1970. doi:10.1007/978-3-642-86405-6