Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 51-59.

Voir la notice de l'article provenant de la source Library of Science

In this paper we clarify that the interior proximal method developed in [6] (vol. 27 of this journal) for solving variational inequalities with monotone operators converges under essentially weaker conditions concerning the functions describing the "feasible" set as well as the operator of the variational inequality.
Keywords: variational inequalities, Bregman function, non-polyhedral feasible set, proximal point algorithm
@article{DMDICO_2010_30_1_a2,
     author = {Kaplan, Alexander and Tichatschke, Rainer},
     title = {Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {51--59},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2010},
     zbl = {1214.47063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/}
}
TY  - JOUR
AU  - Kaplan, Alexander
AU  - Tichatschke, Rainer
TI  - Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2010
SP  - 51
EP  - 59
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/
LA  - en
ID  - DMDICO_2010_30_1_a2
ER  - 
%0 Journal Article
%A Kaplan, Alexander
%A Tichatschke, Rainer
%T Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2010
%P 51-59
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/
%G en
%F DMDICO_2010_30_1_a2
Kaplan, Alexander; Tichatschke, Rainer. Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/

[1] A. Auslender and M. Haddou, An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming 71 (1995), 77-100. doi:10.1007/BF01592246

[2] A. Auslender and M. Teboulle, Entropic proximal decomposition methods for convex programs and variational inequalities, Math. Programming (A) 91 (2001), 33-47.

[3] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Computational Optimization and Applications 12 (1999), 31-40. doi:10.1023/A:1008607511915

[4] Y. Censor, A. Iusem and S.A. Zenios, An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming 81 (1998), 373-400. doi:10.1007/BF01580089

[5] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities: Case of non-paramonotone operators, Journal of Set-valued Analysis 12 (2004), 357-382. doi:10.1007/s11228-004-4379-2

[6] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities on non-polyhedral sets, Discuss. Math. DICO 27 (2007), 71-93.