Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2010_30_1_a2, author = {Kaplan, Alexander and Tichatschke, Rainer}, title = {Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {51--59}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2010}, zbl = {1214.47063}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/} }
TY - JOUR AU - Kaplan, Alexander AU - Tichatschke, Rainer TI - Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2010 SP - 51 EP - 59 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/ LA - en ID - DMDICO_2010_30_1_a2 ER -
%0 Journal Article %A Kaplan, Alexander %A Tichatschke, Rainer %T Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2010 %P 51-59 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/ %G en %F DMDICO_2010_30_1_a2
Kaplan, Alexander; Tichatschke, Rainer. Note on the paper: interior proximal method for variational inequalities on non-polyhedral sets. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 30 (2010) no. 1, pp. 51-59. http://geodesic.mathdoc.fr/item/DMDICO_2010_30_1_a2/
[1] A. Auslender and M. Haddou, An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming 71 (1995), 77-100. doi:10.1007/BF01592246
[2] A. Auslender and M. Teboulle, Entropic proximal decomposition methods for convex programs and variational inequalities, Math. Programming (A) 91 (2001), 33-47.
[3] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Computational Optimization and Applications 12 (1999), 31-40. doi:10.1023/A:1008607511915
[4] Y. Censor, A. Iusem and S.A. Zenios, An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming 81 (1998), 373-400. doi:10.1007/BF01580089
[5] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities: Case of non-paramonotone operators, Journal of Set-valued Analysis 12 (2004), 357-382. doi:10.1007/s11228-004-4379-2
[6] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities on non-polyhedral sets, Discuss. Math. DICO 27 (2007), 71-93.