On the existence of solutions of an integro-differential equation in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 107-111.

Voir la notice de l'article provenant de la source Library of Science

@article{DMDICO_2009_29_1_a6,
     author = {Szufla, Stanis{\l}aw},
     title = {On the existence of solutions of an integro-differential equation in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {107--111},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     zbl = {1195.45036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/}
}
TY  - JOUR
AU  - Szufla, Stanisław
TI  - On the existence of solutions of an integro-differential equation in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2009
SP  - 107
EP  - 111
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/
LA  - en
ID  - DMDICO_2009_29_1_a6
ER  - 
%0 Journal Article
%A Szufla, Stanisław
%T On the existence of solutions of an integro-differential equation in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2009
%P 107-111
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/
%G en
%F DMDICO_2009_29_1_a6
Szufla, Stanisław. On the existence of solutions of an integro-differential equation in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 107-111. http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/

[1] J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York-Basel, 1980.

[2] H.P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351-1371.

[3] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN, Warszawa, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991.

[4] M. Kisielewicz, Existence, uniqueness and continuous depedence of solutions of differential equations in Banach spaces, Ann. Polon. Math. 50 (1989), 117-128.

[5] S. Szufla, On Volterra integral equations in Banach spaces, Funkcial. Ekvac. 20 (1977), 247-258.

[6] S. Szufla, Osgood type conditions for an m-th order differential equation, Discuss. Math. Diff. Inclusions 18 (1998), 45-55.

[7] S. Szufla, On the of structure of solutions sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165-177.