Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2009_29_1_a6, author = {Szufla, Stanis{\l}aw}, title = {On the existence of solutions of an integro-differential equation in {Banach} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {107--111}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, zbl = {1195.45036}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/} }
TY - JOUR AU - Szufla, Stanisław TI - On the existence of solutions of an integro-differential equation in Banach spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2009 SP - 107 EP - 111 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/ LA - en ID - DMDICO_2009_29_1_a6 ER -
%0 Journal Article %A Szufla, Stanisław %T On the existence of solutions of an integro-differential equation in Banach spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2009 %P 107-111 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/ %G en %F DMDICO_2009_29_1_a6
Szufla, Stanisław. On the existence of solutions of an integro-differential equation in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 107-111. http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a6/
[1] J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Marcel Dekker, New York-Basel, 1980.
[2] H.P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351-1371.
[3] M. Kisielewicz, Differential Inclusions and Optimal Control, PWN, Warszawa, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991.
[4] M. Kisielewicz, Existence, uniqueness and continuous depedence of solutions of differential equations in Banach spaces, Ann. Polon. Math. 50 (1989), 117-128.
[5] S. Szufla, On Volterra integral equations in Banach spaces, Funkcial. Ekvac. 20 (1977), 247-258.
[6] S. Szufla, Osgood type conditions for an m-th order differential equation, Discuss. Math. Diff. Inclusions 18 (1998), 45-55.
[7] S. Szufla, On the of structure of solutions sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165-177.