Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 53-66.

Voir la notice de l'article provenant de la source Library of Science

In this paper we establish an estimation for the rate of pointwise convergence of the Chlodovsky-Kantorovich polynomials for functions f locally integrable on the interval [0,∞). In particular, corresponding estimation for functions f measurable and locally bounded on [0,∞) is presented, too.
Keywords: Chlodovsky polynomial, Kantorovich polynomial, rate of convergence
@article{DMDICO_2009_29_1_a3,
     author = {Pych-Taberska, Paulina},
     title = {Rates of convergence of {Chlodovsky-Kantorovich} polynomials in classes of locally integrable functions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     zbl = {1195.41017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a3/}
}
TY  - JOUR
AU  - Pych-Taberska, Paulina
TI  - Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2009
SP  - 53
EP  - 66
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a3/
LA  - en
ID  - DMDICO_2009_29_1_a3
ER  - 
%0 Journal Article
%A Pych-Taberska, Paulina
%T Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2009
%P 53-66
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a3/
%G en
%F DMDICO_2009_29_1_a3
Pych-Taberska, Paulina. Rates of convergence of Chlodovsky-Kantorovich polynomials in classes of locally integrable functions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 53-66. http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a3/

[1] J. Albrycht and J. Radecki, On a generalization of the theorem of Voronovskaya, Zeszyty Naukowe UAM, Zeszyt 2, Poznań (1960), 1-7.

[2] R. Bojanic and O. Shisha, Degree of L₁ approximation to integrable functions by modified Bernstein polynomials, J. Approx. Theory 13 (1975), 66-72.

[3] P.L. Butzer and H. Karsli, Voronovskaya-type theorems for derivatives of the Bernstein-Chlodovsky polynomials and the Szász-Mirakyan operator, Comment. Math., to appear.

[4] Z.A. Chanturiya, Modulus of variation of functions and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR 214 (1974), 63-66.

[5] I. Chlodovsky, Sur le développement des fonctions définies dans un intervalle infini en séries de polynomes de M.S. Bernstein, Compositio Math. 4 (1937), 380-393.

[6] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 5 (1) (1989), 105-127.

[7] H. Karsli and E. Ibikli, Rate of convergence of Chlodovsky type Bernstein operators for functions of bounded variation, Numer. Funct. Anal. Optim. 28 (3-4) (2007), 367-378.

[8] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.

[9] P. Pych-Taberska, Some properties of the Bézier-Kantorovich type operators, J. Approx. Theory 123 (2003), 256-269.

[10] L.C. Young, General inequalities for Stieltjes integrals and the convergence of Fourier series, Math. Annalen 115 (1938), 581-612.

[11] X.M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions, J. Math. Anal. Appl. 219 (2) (1998), 364-376.

[12] X.M. Zeng and A. Piriou On the rate of convergence of two Berstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387.