Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2008_28_1_a4, author = {Ahmed, N.}, title = {Vector and operator valued measures as controls for infinite dimensional systems: optimal control}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {95--131}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, zbl = {1181.28013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a4/} }
TY - JOUR AU - Ahmed, N. TI - Vector and operator valued measures as controls for infinite dimensional systems: optimal control JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2008 SP - 95 EP - 131 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a4/ LA - en ID - DMDICO_2008_28_1_a4 ER -
%0 Journal Article %A Ahmed, N. %T Vector and operator valued measures as controls for infinite dimensional systems: optimal control %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2008 %P 95-131 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a4/ %G en %F DMDICO_2008_28_1_a4
Ahmed, N. Vector and operator valued measures as controls for infinite dimensional systems: optimal control. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 95-131. http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a4/
[1] N.U. Ahmed, Differential inclusions, operator valued measures and optimal control, Special Issue of Dynamic Systems and Applications, Set-Valued Methods in Dynamic Systems, Guest Editors: M. Michta and J. Motyl, DSA 16 (2007), 13-36.
[2] N.U. Ahmed, Evolution equations determined by operator valued measures and optimal control, Nonlinear Analsis: TMA Series A 67 (11) (2007), 3199-3216.
[3] N.U. Ahmed, Impulsive perturbation of C₀-semigroups by operator valued measures, Nonlinear Func. Anal. and Appl. 9 (1) (2004), 127-147.
[4] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series 246 (1991), Longman Scientific and Technical, U.K. and John Wiley, New York.
[5] N.U. Ahmed, Optimization and Identification of Systems Governed by Evolution Equations on Banach Spaces, Pitman Research Notes in Mathematics Series 184 (1988), Longman Scientific and Technical, U.K. and John Wiley, New York.
[6] N.U. Ahmed, Controllability of evolution equations and inclusions driven by vector measures, Discuss. Math. Differential Inclusions, Control and Optimization 24 (2004), 49-72.
[7] N.U. Ahmed, Existence of optimal controls for a general class of impulsive systems on Banach spaces, SIAM J. Control Optim. 42 (2) (2003), 669-685.
[8] J. Diestel and J.J. Uhl, Jr. Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, Rhode Island, 1977.
[9] I. Dobrakov, On integration in Banach spaces I, Czechoslav Math. J. 20 (95) (1970), 511-536.
[10] I. Dobrakov, On Integration in Banach Spaces IV, Czechoslav Math. J. 30 (105) (1980), 259-279.
[11] N. Dunford and J.T. Schwartz, Linear Operators, Part 1, Interscience Publishers, Inc., New York, London, second printing, 1964.
[12] T.V. Panchapagesan, On the distinguishing features of the Dobrakov integral, Divulgaciones Matematicas, Maracaibo, Venezuela 3 (1) (1995), 79-114.
[13] W.V. Smith and D.H. Tucker, Weak integral convergence theorems and operator measures, Pacific J. Math. 111 (1) (1984), 243-256.
[14] M.E. Munroe, Introduction to Measure and Integration, Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, USA, 1953.
[15] N.U. Ahmed, Some remarks on the dynamics of impulsive systems in Banach spaces, DCDIS 8 (2001), 261-174.
[16] J.K. Brooks and P.W. Lewis, Linear operators and vector measures, Trans. American Mathematical Society 192 (1974), 139-162.
[17] A.D. Bandrauk, M.C. Delfour and C.L. Bris (Eds), Quantum Control: Mathematical and Numerical Challenges, CRM Proceedings Lecture Notes, AMS, Vol. 33, (2002/2003), Providence, Rhode Island USA.
[18] N.U. Ahmed, A class of semilinear parabolic and hyperbolic systems determined by operator valued measures, DCDIS, Series A, Math. Anal. 14 (2007), 465-485.