Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2008_28_1_a3, author = {Salem, Hussein}, title = {Set-valued fractional order differential equations in the space of summable functions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {83--93}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, zbl = {1181.26018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/} }
TY - JOUR AU - Salem, Hussein TI - Set-valued fractional order differential equations in the space of summable functions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2008 SP - 83 EP - 93 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/ LA - en ID - DMDICO_2008_28_1_a3 ER -
%0 Journal Article %A Salem, Hussein %T Set-valued fractional order differential equations in the space of summable functions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2008 %P 83-93 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/ %G en %F DMDICO_2008_28_1_a3
Salem, Hussein. Set-valued fractional order differential equations in the space of summable functions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 83-93. http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/
[1] [1] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), 434-442.
[2] [2] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547.
[3] [3] M. Bassam, Some existence theorems on D.E. of generalized order, J. fur die Reine und Angewandte Mathematik 218 (1965), 70-78.
[4] [Bc] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.
[5] [5] M. Cichoń, Multivalued perturbations of m-accretive differential inclusions in a non-separable Banach space, Commentationes Math. 32 (1992), 11-17.
[6] [6] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
[7] [4] V. Daftardar-Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl. 302 (2005), 56-64.
[8] [7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
[9] [8] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.
[10] [9] A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15-25.
[11] [AAA] A.M.A. El-Sayed and A.G. Ibrahim, Definite integral of fractional order for set-valued functions, J. Frac. Calculus 11 (1996), 15-25.
[12] [11] A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary order, Nonlinear Anal. 33 (2) (1998), 181-186.
[13] [12] A.M.A. El-Sayed and A.G. Ibrahim, Set-valued integral equations of arbitrary (fractional) order, Appl. Math. Comput. 118 (2001), 113-121.
[14] [14] V.G. Gutev, Selection theorems under an assumption weaker than lower semi-continuity, Topol. Appl. 50 (1993), 129-138.
[15] [15] S.B. Hadid, Local and global existence theorems on differential equations of non-integer order, J. Frac. Calculus 7 (1995), 101-105.
[16] [kil] A.A. Kilbas and J.J. Trujillo, Differential equations of fractional order: methods, results and problems, I, Appl. Anal. 78 (2001), 153-192.
[17] [kst] A.A. Kilbas, H.M. Srivastava and J.J Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, 2006.
[18] [16] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
[19] [17] K. Przesławski and L.E. Rybiński, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc. 109 (1990), 537-543.
[20] [18] D. Repovs and P.V. Semenov, Continuous Selection of Multivalued Mappings, Kluwer Academic Press, 1998.
[21] [19] S. Samko, A. Kilbas and O. Marichev, Fraction Integrals and Drivatives, Gordon and Breach Science Publisher, 1993.
[22] [sz] J.-P. Sun and Y.-H. Zhao, Multiplicity of positive solutions of a class of nonlinear fractional differential equations, J. Computer and Math. Appl. 49 (2005), 73-80.
[23] [20] C. Swartz, Measure, Integration and Function Spaces, World Scientific, Singapore, 1994.