Set-valued fractional order differential equations in the space of summable functions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 83-93.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the existence of integrable solutions for the set-valued differential equation of fractional type
Keywords: fractional calculus, set-valued problem
@article{DMDICO_2008_28_1_a3,
     author = {Salem, Hussein},
     title = {Set-valued fractional order differential equations in the space of summable functions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     zbl = {1181.26018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/}
}
TY  - JOUR
AU  - Salem, Hussein
TI  - Set-valued fractional order differential equations in the space of summable functions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2008
SP  - 83
EP  - 93
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/
LA  - en
ID  - DMDICO_2008_28_1_a3
ER  - 
%0 Journal Article
%A Salem, Hussein
%T Set-valued fractional order differential equations in the space of summable functions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2008
%P 83-93
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/
%G en
%F DMDICO_2008_28_1_a3
Salem, Hussein. Set-valued fractional order differential equations in the space of summable functions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 83-93. http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a3/

[1] [1] A. Babakhani and V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), 434-442.

[2] [2] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547.

[3] [3] M. Bassam, Some existence theorems on D.E. of generalized order, J. fur die Reine und Angewandte Mathematik 218 (1965), 70-78.

[4] [Bc] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.

[5] [5] M. Cichoń, Multivalued perturbations of m-accretive differential inclusions in a non-separable Banach space, Commentationes Math. 32 (1992), 11-17.

[6] [6] C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.

[7] [4] V. Daftardar-Gejji, Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl. 302 (2005), 56-64.

[8] [7] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.

[9] [8] J. Dugundji and A. Granas, Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw, 1982.

[10] [9] A.M.A. El-Sayed and A.G. Ibrahim, Multivalued fractional differential equations, Appl. Math. Comput. 68 (1995), 15-25.

[11] [AAA] A.M.A. El-Sayed and A.G. Ibrahim, Definite integral of fractional order for set-valued functions, J. Frac. Calculus 11 (1996), 15-25.

[12] [11] A.M.A. El-Sayed, Nonlinear functional differential equations of arbitrary order, Nonlinear Anal. 33 (2) (1998), 181-186.

[13] [12] A.M.A. El-Sayed and A.G. Ibrahim, Set-valued integral equations of arbitrary (fractional) order, Appl. Math. Comput. 118 (2001), 113-121.

[14] [14] V.G. Gutev, Selection theorems under an assumption weaker than lower semi-continuity, Topol. Appl. 50 (1993), 129-138.

[15] [15] S.B. Hadid, Local and global existence theorems on differential equations of non-integer order, J. Frac. Calculus 7 (1995), 101-105.

[16] [kil] A.A. Kilbas and J.J. Trujillo, Differential equations of fractional order: methods, results and problems, I, Appl. Anal. 78 (2001), 153-192.

[17] [kst] A.A. Kilbas, H.M. Srivastava and J.J Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, 2006.

[18] [16] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

[19] [17] K. Przesławski and L.E. Rybiński, Michael selection theorem under weak lower semicontinuity assumption, Proc. Amer. Math. Soc. 109 (1990), 537-543.

[20] [18] D. Repovs and P.V. Semenov, Continuous Selection of Multivalued Mappings, Kluwer Academic Press, 1998.

[21] [19] S. Samko, A. Kilbas and O. Marichev, Fraction Integrals and Drivatives, Gordon and Breach Science Publisher, 1993.

[22] [sz] J.-P. Sun and Y.-H. Zhao, Multiplicity of positive solutions of a class of nonlinear fractional differential equations, J. Computer and Math. Appl. 49 (2005), 73-80.

[23] [20] C. Swartz, Measure, Integration and Function Spaces, World Scientific, Singapore, 1994.