Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 15-73.

Voir la notice de l'article provenant de la source Library of Science

Similarly to quasidifferential equations of Panasyuk, the so-called mutational equations of Aubin provide a generalization of ordinary differential equations to locally compact metric spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance. In spite of lacking any linear structures, a distribution-like approach leads to so-called right-hand forward solutions.
Keywords: mutational equations, quasidifferential equations, funnel equations, nonlocal geometric evolutions, reachable sets of differential inclusions, sets of positive erosion, sets of positive reach
@article{DMDICO_2008_28_1_a1,
     author = {Lorenz, Thomas},
     title = {Evolution equations in ostensible metric spaces: {First-order} evolutions of nonsmooth sets with nonlocal terms},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {15--73},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     zbl = {1192.34070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a1/}
}
TY  - JOUR
AU  - Lorenz, Thomas
TI  - Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2008
SP  - 15
EP  - 73
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a1/
LA  - en
ID  - DMDICO_2008_28_1_a1
ER  - 
%0 Journal Article
%A Lorenz, Thomas
%T Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2008
%P 15-73
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a1/
%G en
%F DMDICO_2008_28_1_a1
Lorenz, Thomas. Evolution equations in ostensible metric spaces: First-order evolutions of nonsmooth sets with nonlocal terms. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 15-73. http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a1/

[1] L. Ambrosio, Geometric evolution problems, distance function and viscosity solutions, in: Buttazzo, G. (ed.) et al., Calculus of variations and partial differential equations. Topics on geometrical evolution problems and degree theory (Springer-Verlag, 2000).

[2] J.-P. Aubin, Mutational and Morphological Analysis: Tools for Shape Evolution and Morphogenesis (Birkhäuser-Verlag, Systems and Control, 1999).

[3] J.-P. Aubin, Mutational equations in metric spaces, Set-Valued Analysis 1 (1993), 3-46.

[4] J.-P. Aubin, A note on differential calculus in metric spaces and its applications to the evolution of tubes, Bull. Pol. Acad. Sci., Math. 40 (2) (1992), 151-162.

[5] J.-P. Aubin, Viability Theory (Birkhäuser-Verlag, Systems and Control, 1991).

[6] G. Barles and O. Ley, Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics, Commun. Partial Differ. Equations 31 (8) (2006), 1191-1208.

[7] G. Barles, H.M. Soner and P.E. Souganidis, Front propagation and phase field theory, SIAM J. Control Optimization 31 (2) (1993), 439-469.

[8] G. Barles and P. Souganidis, A new approach to front propagation problems: theory and applications, Arch. Ration. Mech. Anal. 141 (3) (1998), 237-296.

[9] E.N. Barron, P. Cannarsa, R. Jensen and C. Sinestrari, Regularity of Hamilton-Jacobi equations when forward is backward, Indiana Univ. Math. J. 48 (2) (1999), 385-409.

[10] G. Bellettini and M. Novaga, Comparison results between minimal barriers and viscosity solutions for geometric evolutions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 26 (1) (1998), 97-131.

[11] G. Bellettini and M. Novaga, Minimal barriers for geometric evolutions, J. Differ. Equations 139 (1) (1997), 76-103.

[12] K. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, 1978.

[13] A. Bressan, On two conjectures by Hájek, Funkcial. Ekvac. 23 (1980), 221-227.

[14] P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var. 12 (2006), 350-370.

[15] P. Cardaliaguet, Front propagation problems with nonlocal terms II, J. Math. Anal. Appl. 260 (2) (2001), 572-601.

[16] P. Cardaliaguet, On front propagation problems with nonlocal terms, Adv. Differ. Equ. 5 (1-3) (2000), 213-268.

[17] N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control, Trans. Amer. Math. Soc. 348 (8) (1996), 3133-3153.

[18] Yun-G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ. Geom. 33 (3) (1991), 749-786.

[19] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, Canadian Mathematical Society Series of Monographs and Advanced Texts, 1983.

[20] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Complements, approximations, smoothings and invariance properties, J. Convex Anal. 4 (2) (1997), 189-219.

[21] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-C² property, J. Convex Anal. 2 (1/2) (1995), 117-144.

[22] B. Cornet and M.-O. Czarnecki, Smooth normal approximations of epi-Lipschitzian subsets of ℝⁿ, SIAM J. Control Optim. 37 (3) (1999), 710-730.

[23] M. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., New Ser. 27 (1) (1992), 1-67.

[24] M. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1) (1983), 1-42.

[25] L. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Differ. Geom. 33 (3) (1991), 635-681.

[26] L. Evans and J. Spruck, Motion of level sets by mean curvature II, Trans. Amer. Math. Soc. 330 (1) (1992), 321-332.

[27] E. De Giorgi, Barriers, boundaries, motion of manifolds, Lectures held in Pavia, Italy, 1994.

[28] M.C. Delfour and J.-P. Zolésio, Evolution equations for shapes and geometries, J. Evol. Equ. 6 (2006), 399-417.

[29] M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Analysis, differential calculus, and optimization, SIAM, Advances in Design and Control 4, 2001.

[30] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.

[31] H. Federer, Geometric Measure Theory, Springer-Verlag, Grundlehren der mathematischen Wissenschaften 153, 1969.

[32] H. Frankowska, Value function in optimal control, in: Agrachev, A.A. (ed.), Mathematical control theory, ICTP Lect. Notes. 8 (2002), 515-653.

[33] J.C. Kelly, Bitopological spaces, Proc. Lond. Math. Soc., III. Ser. 13 (1963), 71-89.

[34] P.E. Kloeden, B.N. Sadovsky and I.E. Vasilyeva, Quasi-flows and equations with nonlinear differentials, Nonlinear Anal. 51 (7) (2002), 1143-1158.

[35] H.-P. Künzi, Complete quasi-pseudo-metric spaces, Acta Math. Hung. 59 (1/2) (1992), 121-146.

[36] A. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser-Verlag, Systems and Control, 1997.

[37] A.B. Kurzhanski and P. Varaiya, On reachability under uncertainty, SIAM J. Control Optimization 41 (1) (2002), 181-216.

[38] A.B. Kurzhanski and O.I. Nikonov, Funnel equations and multivalued integration problems for control synthesis, in: Perspectives in control theory, Proc. Conf., Sielpia/Pol. 1988, Prog. Syst. Control Theory 2 (1990), 143-153.

[39] Th. Lorenz, Generalizing mutational equations for uniqueness of some nonlocal 1st-order geometric evolutions, Set-Valued Analysis 16 (2008), 1-50.

[40] Th. Lorenz, Radon measures solving the Cauchy problem of the nonlinear transport equation, (2007) IWR Preprint available at http://www.ub.uni-heidelberg.de/archiv/7252.

[41] Th. Lorenz, Evolution equations in ostensible metric spaces: Definitions and existence, (2005) IWR Preprint available at http://www.ub.uni-heidelberg.de/archiv/5519.

[42] Th. Lorenz, Boundary regularity of reachable sets of control systems, Syst. Control Lett. 54 (9) (2005), 919-924.

[43] Th. Lorenz, First-order geometric evolutions and semilinear evolution equations: A common mutational approach, Ph.D. thesis, Ruprecht-Karls-University of Heidelberg, (2004) available at http://www.ub.uni-heidelberg.de/archiv/4949.

[44] S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1) (1988), 12-49.

[45] A.I. Panasyuk, Quasidifferential equations in a complete metric space under conditions of the Carathéodory type I, Differ. Equations 31 (6) (1995), 901-910.

[46] A.I. Panasyuk, Properties of solutions of a quasidifferential approximation equation and the equation of an integral funnel, Differ. Equations 28 (9) (1992), 1259-1266.

[47] A.I. Panasyuk, Quasidifferential equations in metric spaces, Differ. Equations 21 (1985), 914-921.

[48] R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc. 352 (11) (2000), 5231-5249.

[49] R.T. Rockafellar and R. Wets, Variational Analysis, Springer-Verlag, Grundlehren der mathematischen Wissenschaften 317 (1998).

[50] H.L. Royden, Comparison theorems for the matrix Riccati equation, Commun. Pure Appl. Math. 41 (5) (1988), 739-746.

[51] T. Rzeżuchowski, Boundary solutions of differential inclusions and recovering the initial data, Set-Valued Analysis 5 (1997), 181-193.

[52] T. Rzeżuchowski, Continuous parameterization of attainable sets by solutions of differential inclusions, Set-Valued Analysis 7 (1999), 347-355.

[53] R.A. Stoltenberg, On quasi-metric spaces, Duke Math. J. 36 (1969), 65-71.

[54] R. Vinter, Optimal Control, Birkhäuser-Verlag, Systems and Control, 2000.

[55] W.A. Wilson, On quasi-metric spaces, Amer. J. Math. 53 (1931), 675-684.