Fixed point theory for multivalued maps in Fréchet spaces via degree and index theory
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 399-409.

Voir la notice de l'article provenant de la source Library of Science

New fixed point results are presented for multivalued maps defined on subsets of a Fréchet space E. The proof relies on the notion of a pseudo open set, degree and index theory, and on viewing E as the projective limit of a sequence of Banach spaces.
Keywords: multivalued maps, Fréchet space, degree and index theory, projective limit
@article{DMDICO_2007_27_2_a9,
     author = {Agarwal, R. and O'Regan, D. and Sahu, D.},
     title = {Fixed point theory for multivalued maps in {Fr\'echet} spaces via degree and index theory},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {399--409},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     zbl = {1158.47040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a9/}
}
TY  - JOUR
AU  - Agarwal, R.
AU  - O'Regan, D.
AU  - Sahu, D.
TI  - Fixed point theory for multivalued maps in Fréchet spaces via degree and index theory
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 399
EP  - 409
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a9/
LA  - en
ID  - DMDICO_2007_27_2_a9
ER  - 
%0 Journal Article
%A Agarwal, R.
%A O'Regan, D.
%A Sahu, D.
%T Fixed point theory for multivalued maps in Fréchet spaces via degree and index theory
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 399-409
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a9/
%G en
%F DMDICO_2007_27_2_a9
Agarwal, R.; O'Regan, D.; Sahu, D. Fixed point theory for multivalued maps in Fréchet spaces via degree and index theory. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 399-409. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a9/

[1] R.P. Agarwal, M. Frigon and D. O'Regan, A survey of recent fixed point theory in Fréchet spaces, Nonlinear Analysis and Applications: to V. Lakshmikantham on his 80th birthday, Kluwer Acad. Publ., Dordrecht 1 (2003), 75-88.

[2] R.P. Agarwal and D. O'Regan, An index theory for countably P-concentrative J maps, Applied Math. Letters 16 (2003), 1265-1271.

[3] J. Andres, G. Gabor and L. Gorniewicz, Boundary value problems on infinite intervals, Trans. Amer. Math. Soc. 351 (1999), 4861-4903.

[4] P.M. Fitzpatrick and W.V. Petryshyn, Fixed point theorems and fixed point index for multivalued mappings in cones, J. London Math. Soc. 12 (1975), 75-82.

[5] L. Gorniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory of multi-valued mappings of compact absolute neighborhood retracts, J. Math. Anal. Appl. 161 (1991), 457-473.

[6] L.V. Kantorovich and G.P. Akilov, Functional analysis in normed spaces, Pergamon Press, Oxford, 1964.

[7] D. O'Regan, Y.J. Cho and Y.Q. Chen, Topological Degree Theory and Applications, Chapman and Hall/CRC, Boca Raton, 2006.

[8] M. Väth, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), 341-363.

[9] M. Väth, Merging of degree and index theory, Fixed Point Theory and Applications, Volume 2006 (2006), Article ID 36361, 30 pages.