Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2007_27_1_a9, author = {Szymkat, Maciej and Korytowski, Adam}, title = {Evolution of structure for direct control optimization}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {165--193}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, zbl = {1191.49031}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a9/} }
TY - JOUR AU - Szymkat, Maciej AU - Korytowski, Adam TI - Evolution of structure for direct control optimization JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2007 SP - 165 EP - 193 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a9/ LA - en ID - DMDICO_2007_27_1_a9 ER -
%0 Journal Article %A Szymkat, Maciej %A Korytowski, Adam %T Evolution of structure for direct control optimization %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2007 %P 165-193 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a9/ %G en %F DMDICO_2007_27_1_a9
Szymkat, Maciej; Korytowski, Adam. Evolution of structure for direct control optimization. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 165-193. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a9/
[1] J.T. Betts, Survey of numerical methods for trajectory optimization, Journal of Guidance, Control and Dynamics 21 (2) (1998), 193-207.
[2] J.T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, SIAM (2001).
[3] H.G. Bock and K.J. Plitt, A multiple shooting algorithm for direct solution of optimal control problems, IFAC 9th World Congress, Budapest, Hungary 1984.
[4] R. Bulirsch, F. Montrone and H.J. Pesch, Abort landing in the presence of a windshear as a minimax optimal control problem, part 2: multiple shooting and homotopy, Journal of Optimization Theory and Applications 70 (1991), 223-254.
[5] A. Cervantes and L.T. Biegler, Optimization Strategies for Dynamic Systems, Encyclopedia of Optimization 4 216-227, C. Floudas and P. Pardalos (eds.), Kluwer 2001.
[6] C.R. Hargraves and S.W. Paris, Direct trajectory optimization using nonlinear programming and collocation, Journal of Guidance 10 (4) (1987), 338-342.
[7] C.Y. Kaya and J.L. Noakes, Computational algorithm for time-optimal switching control, Journal of Optimization Theory and Applications 117 (1) (2003), 69-92.
[8] J. Kierzenka and L.F. Shampine, A BVP solver based on residual control and the Matlab PSE, ACM Transactions on Mathematical Software 27 (3) (2001), 299-316.
[9] D. Kraft, On converting optimal control problems into nonlinear programming problems, Computational Mathematics and Programming, 15 (1985), 261-280.
[10] R.R. Kumar and H. Seywald, Should controls be eliminated while solving optimal control problems via direct methods? Journal of Guidance, Control, and Dynamics 19 (2) (1996), 418-423.
[11] H. Maurer, C. Büskens, J.-H.R. Kim and C.Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods 26 (2005), 129-156.
[12] J. Miller, A. Korytowski and M. Szymkat, Two-stage construction of aircraft thrust models for optimal control computations, Submitted to Optimal Control Applications and Methods.
[13] M. Pauluk, A. Korytowski, A. Turnau and M. Szymkat, Time optimal control of 3D crane, Proc. 7th IEEE MMAR 2001, Międzyzdroje, Poland, August 28-31 (2001), 927-932.
[14] H. Seywald, Long flight-time range-optimal aircraft trajectories, Journal of Guidance, Control, and Dynamics 19 (1) (1996), 242-244.
[15] H. Shen and P. Tsiotras, Time-optimal control of axi-symmetric rigid spacecraft with two controls, Journal of Guidance, Control and Dynamics 22 (1999), 682-694.
[16] H.R. Sirisena, A gradient method for computing optimal bang-bang control, International Journal of Control 19 (1974), 257-264.
[17] B. Srinivasan, S. Palanki and D. Bonvin, Dynamic optimization of batch processes, I. Characterization of the nominal solution, Computers and Chemical Engineering 27 (1) (2003), 1-26.
[18] O. von Stryk, User's guide for DIRCOL - a direct collocation method for the numerical solution of optimal control problems, Ver. 2.1, Technical University of Munich 1999.
[19] M. Szymkat, A. Korytowski and A. Turnau, Computation of time optimal controls by gradient matching, Proc. 1999 IEEE CACSD, Kohala Coast, Hawai'i, August 22-27 (1999), 363-368.
[20] M. Szymkat, A. Korytowski and A. Turnau, Variable control parameterization for time-optimal problems, Proc. 8th IFAC CACSD 2000, Salford, U.K., September 11-13, 2000, T4A.
[21] M. Szymkat, A. Korytowski and A. Turnau, Extended variable parameterization method for optimal control, Proc. IEEE CCA/CCASD 2002, Glasgow, Scotland, September 18-20, 2002.
[22] M. Szymkat and A. Korytowski, Method of monotone structural evolution for control and state constrained optimal control problems, European Control Conference ECC 2003, University of Cambridge, U.K., September 1-4, 2003.
[23] J. Wen and A.A. Desrochers, An algorithm for obtaining bang-bang control laws, Journal of Dynamic Systems, Measurement, and Control 109 (1987), 171-175.