Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2007_27_1_a5, author = {Kahlbacher, Martin and Volkwein, Stefan}, title = {Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {95--117}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, zbl = {1156.35020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a5/} }
TY - JOUR AU - Kahlbacher, Martin AU - Volkwein, Stefan TI - Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2007 SP - 95 EP - 117 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a5/ LA - en ID - DMDICO_2007_27_1_a5 ER -
%0 Journal Article %A Kahlbacher, Martin %A Volkwein, Stefan %T Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2007 %P 95-117 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a5/ %G en %F DMDICO_2007_27_1_a5
Kahlbacher, Martin; Volkwein, Stefan. Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 95-117. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a5/
[1] H.W. Alt, Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung, Springer-Verlag, Berlin 1992.
[2] J.A. Atwell and B.B. King, Reduced order controllers for spatially distributed systems via proper orthogonal decomposition, SIAM Journal Scientific Computation, to appear.
[3] H.T. Banks, M.L. Joyner, B. Winchesky and W.P. Winfree, Nondestructive evaluation using a reduced-order computational methodology, Inverse Problems 16 (2000), 1-17.
[4] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C.R. Acad. Sci. Paris, Ser. I 339 (2004), 667-672.
[5] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island 1998.
[6] K. Fukuda, Introduction to Statistical Recognition, Academic Press, New York 1990.
[7] M.D. Gunzburger, L. Hou and T.P. Svobodny, Finite element approximations of an optimal control problem associated with the scalar Ginzburg-Landau equation, Computers Math. Applic. 21 (1991), 123-131.
[8] M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, to appear in Computational Optimization and Applications.
[9] P. Holmes, J.L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press 1996.
[10] C. Homescu, L.R. Petzold and R. Serban, Error estimation for reduced order models of dynamical systems, SIAM J. Numer. Anal. 43 (2005), 1693-1714.
[11] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin 1980.
[12] K. Kunisch and S. Volkwein, Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition, J. Optimization Theory and Applications 102 (1999), 345-371.
[13] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik 90 (2001), 117-148.
[14] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM Journal on Numerical Analysis 40 (2002), 492-515.
[15] S. Lall, J.E. Marsden and S. Glavaski, Empirical model reduction of controlled nonlinear systems, in: Proceedings of the IFAC Congress, vol. F (1999), 473-478.
[16] H.V. Ly and H.T. Tran, Modelling and control of physical processes using proper orthogonal decomposition, Mathematical and Computer Modeling 33 (2001), 223-236.
[17] L. Machiels, Y. Maday and A.T. Patera, Output bounds for reduced-order approximations of elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg. 190 (2001), 3413-3426.
[18] Y. Maday and E.M. Rønquist, A reduced-basis element method, Journal of Scientific Computing 17 (2002), 1-4.
[19] M. Rathinam and L. Petzold, Dynamic iteration using reduced order models: a method for simulation of large scale modular systems, SIAM J. Numer. Anal. 40 (2002), 1446-1474.
[20] C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. on Bifurcation and Chaos 15 (2005), 997-1013.
[21] L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III, Quarterly of Applied Mathematics XLV (1987), 561-590.
[22] S. Volkwein, Boundary control of the Burgers equation: optimality conditions and reduced-order approach, in: K.-H. Hoffmann, I. Lasiecka, G. Leugering, J. Sprekels and F. Tröltzsch, eds, Optimal Control of Complex Structures, International Series of Numerical Mathematics 139 (2001), 267-278.
[23] K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition, AIAA (2001), 2001-2611.