Interior proximal method for variational inequalities on non-polyhedral sets
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 71-93.

Voir la notice de l'article provenant de la source Library of Science

Interior proximal methods for variational inequalities are, in fact, designed to handle problems on polyhedral convex sets or balls, only. Using a slightly modified concept of Bregman functions, we suggest an interior proximal method for solving variational inequalities (with maximal monotone operators) on convex, in general non-polyhedral sets, including in particular the case in which the set is described by a system of linear as well as strictly convex constraints. The convergence analysis of the method studied admits the use of the -enlargement of the operator and an inexact solution of the subproblems.
Keywords: variational inequalities, Bregman function, proximal algorithm
@article{DMDICO_2007_27_1_a4,
     author = {Kaplan, Alexander and Tichatschke, Rainer},
     title = {Interior proximal method for variational inequalities on non-polyhedral sets},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {71--93},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     zbl = {1158.47052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a4/}
}
TY  - JOUR
AU  - Kaplan, Alexander
AU  - Tichatschke, Rainer
TI  - Interior proximal method for variational inequalities on non-polyhedral sets
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 71
EP  - 93
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a4/
LA  - en
ID  - DMDICO_2007_27_1_a4
ER  - 
%0 Journal Article
%A Kaplan, Alexander
%A Tichatschke, Rainer
%T Interior proximal method for variational inequalities on non-polyhedral sets
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 71-93
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a4/
%G en
%F DMDICO_2007_27_1_a4
Kaplan, Alexander; Tichatschke, Rainer. Interior proximal method for variational inequalities on non-polyhedral sets. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 71-93. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a4/

[1] A. Auslender and M. Haddou, An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming 71 (1995), 77-100.

[2] A. Auslender and M. Teboulle, Entropic proximal decomposition methods for convex programs and variational inequalities, Math. Programming Ser. A 91 (2001), 33-47.

[3] A. Auslender, M. Teboulle and S. Ben-Tiba, Interior proximal and multiplier methods based on second order homogeneous kernels, Mathematics of Oper. Res. 24 (1999), 645-668.

[4] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Computational Optimization and Applications 12 (1999), 31-40.

[5] H. Bauschke and J. Borwein, Legendre functions and the method of random Bregman projections, J. Convex Analysis 4 (1997), 27-67.

[6] H. Brézis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier 18 (1968), 115-175.

[7] R. Burachik and A. Iusem, A generalized proximal point algorithm for the variational inequality problem in Hilbert space, SIAM J. Optim. 8 (1998), 197-216.

[8] R. Burachik, A. Iusem and B. Svaiter, Enlargements of maximal monotone operators with application to variational inequalities, Set-Valued Analysis 5 (1997), 159-180.

[9] R. Burachik and B. Svaiter, ϵ-enlargement of maximal monotone operators in Banach spaces, Set-Valued Analysis 7 (1999), 117-132.

[10] R. Burachik and B. Svaiter, A relative error tolerance for a family of generalized proximal point methods, Math. of Oper. Res. 26 (2001), 816-831.

[11] Y. Censor, A. Iusem and S.A. Zenios, An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming 81 (1998), 373-400.

[12] Y. Censor and S.A. Zenios, Proximal minimization algorithm with d-functions, J. Optim. Theory Appl. 73 (1992), 451-464.

[13] J. Eckstein, Approximate iterations in Bregman-function-based proximal algorithms, Math. Programming 83 (1998), 113-123.

[14] A. Iusem, On some properties of generalized proximal point methods for quadratic and linear programming, JOTA 85 (1995), 593-612.

[15] A. Iusem, On some properties of paramonotone operators, J. of Conv. Analysis 5 (1998), 269-278.

[16] A. Kaplan and R. Tichatschke, Stable Methods for Ill-Posed Variational Problems - Prox-Regularization of Elliptic Variational Inequalities and Semi-Infinite Optimization Problems, Akademie Verlag, Berlin 1994.

[17] A. Kaplan and R. Tichatschke, Proximal point approach and approximation of variational inequalities, SIAM J. Control Optim. 39 (2000), 1136-1159.

[18] A. Kaplan and R. Tichatschke, Convergence analysis of non-quadratic proximal methods for variational inequalities in Hilbert spaces, J. of Global Optimization 22 (2002), 119-136.

[19] A. Kaplan and R. Tichatschke, Interior proximal method for variational inequalities: Case of non-paramonotone operators, Journal of Set-Valued Analysis 12 (2004), 357-382.

[20] A. Kaplan and R. Tichatschke, On inexact generalized proximal methods with a weakened error tolerance criterion, Optimization 53 (2004), 3-17.

[21] K. Kiwiel, Proximal minimization methods with generalized Bregman functions, SIAM J. Control Optim. 35 (1997), 1142-1168.

[22] J.L. Lions, Quelques Méthodes de Résolution de Problèmes Nonlinéaires, Dunod, Paris 1969.

[23] B. Martinet, Régularisation d'inéquations variationelles par approximations successives, RIRO 4 (1970), 154-159.

[24] N. Megiddo, Pathways to the optimal set in linear programming, In Progress in Mathematical Programming, Interior Point and Related Methods (1989), N. Megiddo, Ed., Springer, New York, pp. 131-158.

[25] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura Academiei, Bucharest 1978.

[26] B.T. Polyak, Introduction to Optimization, Optimization Software, Inc. Publ. Division, New York 1987.

[27] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1970.

[28] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.

[29] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877-898.

[30] M. Solodov and B. Svaiter, An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions, Math. Oper. Res. 25 (2000), 214-230.

[31] M. Teboulle, Convergence of proximal-like algorithms, SIAM J. Optim. 7 (1997), 1069-1083.