Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2007_27_1_a1, author = {Cegielski, Andrzej and Grossmann, Christian}, title = {Properties of projection and penalty methods for discretized elliptic control problems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {23--41}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2007}, zbl = {1283.49030}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a1/} }
TY - JOUR AU - Cegielski, Andrzej AU - Grossmann, Christian TI - Properties of projection and penalty methods for discretized elliptic control problems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2007 SP - 23 EP - 41 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a1/ LA - en ID - DMDICO_2007_27_1_a1 ER -
%0 Journal Article %A Cegielski, Andrzej %A Grossmann, Christian %T Properties of projection and penalty methods for discretized elliptic control problems %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2007 %P 23-41 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a1/ %G en %F DMDICO_2007_27_1_a1
Cegielski, Andrzej; Grossmann, Christian. Properties of projection and penalty methods for discretized elliptic control problems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 23-41. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a1/
[1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl. 23 (2002), 201-229.
[2] E. Casas and F. Tröltzsch, Error estimates for linear-quadratic elliptic control problems, in: Barbu, V. (ed.) et al., Analysis and optimization of differential systems. IFIP TC7/WG 7.2 International Working Conference. Kluwer, Boston (2003), 89-100.
[3] A. Cegielski, A method of projection onto an acute cone with level control in convex minimization, Math. Programming 85 (1999), 469-490.
[4] K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem, Preprint MATH-NM-01-2006, TU Dresden 2006.
[5] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambrigde Univ. Press, Cambridge 1990.
[6] Ch. Grossmann and H.-G. Roos, Numerische Behandlung partieller Differentialgleichungen (3-rd edition), B.G. Teubner, Stuttgart 2005.
[7] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30 (2005), 45-61.
[8] A.A. Kaplan, Convex programming algorithms using the smoothing of exact penalty functions, (Russian), Sib. Mat. Zh. 23 (1982), 53-64.
[9] S. Kim, H. Ahn and S.-C. Cho, Variable target value subgradient method, Math. Programming 49 (1991), 359-369.
[10] K.C. Kiwiel, The efficiency of subgradient projection methods for convex optimization, part I: General level methods, SIAM J. Control Optim. 34 (1996), 660-676.
[11] A. Rösch, Error estimates for linear-quadratic control problems with control constraints, Optim. Methods Softw. 21 (2006), 121-134.
[12] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Theorie, Verfahren und Anwendungen, Vieweg, Wiesbaden 2005.
[13] M. Weiser, T. Gänzler and A. Schiela, A control reduced primal interior point method for PDE constrained optimization, ZIB Report 04-38, Zuse-Zentrum Berlin 2004.
[14] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer, New York 1990.