Error estimates for finite element approximations of elliptic control problems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 7-22.

Voir la notice de l'article provenant de la source Library of Science

We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.
Keywords: Linear quadratic optimal control problems, elliptic equations, finite element approximations, error estimates
@article{DMDICO_2007_27_1_a0,
     author = {Alt, Walter and Br\"autigam, Nils and R\"osch, Arnd},
     title = {Error estimates for finite element approximations of elliptic control problems},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {7--22},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2007},
     zbl = {1191.49035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a0/}
}
TY  - JOUR
AU  - Alt, Walter
AU  - Bräutigam, Nils
AU  - Rösch, Arnd
TI  - Error estimates for finite element approximations of elliptic control problems
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 7
EP  - 22
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a0/
LA  - en
ID  - DMDICO_2007_27_1_a0
ER  - 
%0 Journal Article
%A Alt, Walter
%A Bräutigam, Nils
%A Rösch, Arnd
%T Error estimates for finite element approximations of elliptic control problems
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 7-22
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a0/
%G en
%F DMDICO_2007_27_1_a0
Alt, Walter; Bräutigam, Nils; Rösch, Arnd. Error estimates for finite element approximations of elliptic control problems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 1, pp. 7-22. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_1_a0/

[1] J.P. Aubin, Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Scoula Norm. Sup. Pisa 21 (1967), 599-637.

[2] N. Bräutigam, Diskretisierung elliptischer Steuerungsprobleme, Ph.D. Thesis, Jena 2006.

[3] N. Bräutigam, Discretization of Elliptic Control Problems by Finite Elements, Technical Report, Jena 2006.

[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland 1987.

[5] C. Groß mann and H.-G. Roos, Numerik partieller Differentialgleichungen, Teubner 2005.

[6] M. Hinze, A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case, Computational Optimization and Applications 30 (2005), 45-61.

[7] K. Malanowski, Convergence of Approximations vs. Regularity of Solutions for Convex, Control-Constrained Optimal Control Problems, Appl. Math. Optim. 8 (1981), 69-95.

[8] C. Meyer and A. Rösch, Superconvergence Properties of Optimal Control Problems, SIAM J. Contr. Opt. 43 (2004), 970-985.

[9] J.A. Nitsche, Ein Kriterium für die Quasioptimalität des Ritzschen Verfahrens, Numerische Mathematk 11 (1968), 346-348.

[10] B. Sendov and V.A. Popov, The Averaged Moduli of Smoothness, Wiley-Interscience 1988.

[11] F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg 2005.