Representation of the set of mild solutions to the relaxed semilinear differential inclusion
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 143-158.

Voir la notice de l'article provenant de la source Library of Science

We study the relation between the solutions set to a perturbed semilinear differential inclusion with nonconvex and non-Lipschitz right-hand side in a Banach space and the solutions set to the relaxed problem corresponding to the original one. We find the conditions under which the set of solutions for the relaxed problem coincides with the intersection of closures (in the space of continuous functions) of sets of δ-solutions to the original problem.
Keywords: differential inclusion, mild solution, quasi-solution, convexified and perturbed problem, relaxation theorem
@article{DMDICO_2006_26_1_a8,
     author = {Benedetti, Irene and Panasenko, Elena},
     title = {Representation of the set of mild solutions to the relaxed semilinear differential inclusion},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {143--158},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1147.34044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/}
}
TY  - JOUR
AU  - Benedetti, Irene
AU  - Panasenko, Elena
TI  - Representation of the set of mild solutions to the relaxed semilinear differential inclusion
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2006
SP  - 143
EP  - 158
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/
LA  - en
ID  - DMDICO_2006_26_1_a8
ER  - 
%0 Journal Article
%A Benedetti, Irene
%A Panasenko, Elena
%T Representation of the set of mild solutions to the relaxed semilinear differential inclusion
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2006
%P 143-158
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/
%G en
%F DMDICO_2006_26_1_a8
Benedetti, Irene; Panasenko, Elena. Representation of the set of mild solutions to the relaxed semilinear differential inclusion. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 143-158. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/

[1] J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren Math. Wiss. Vol. 264, Springer-Verlag, Berlin, Heidelberg 1984.

[2] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston-Basel-Berlin 1990.

[3] Yu. Borisovich, B. Gelman, A. Myshkis and V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, Editorial URSS, Moscow 2005 (in Russian).

[4] A. Bulgakov, A. Efremov and E. Panasenko, Ordinary Differential Inclusions with Internal and External Perturbations, Differentsial'nye Uravneniya 36 (12) (2000), 1587-1598, translated in Differential Equations 36 (12) (2000), 1741-1753.

[5] K. Deimling, Multivalued Differential Equations, De Gruyter Sr. Nonlinear Anal. Appl. 1, Walter de Gruyter, Berlin-New York 1992.

[6] A.F. Filippov, Differential Equations with Discontinuous Righthand Side, Dordrecht, Kluwer 1988.

[7] H. Frankowska, A Priori Estimanes for Operational Differential Inclusions, J. Differential Equations 84 (1990), 100-128.

[8] A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, North Holland, Amsterdam 1979.

[9] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Sr. Nonlinear Anal. Appl. 7, Walter de Gruyter, Berlin-New York 2001.

[10] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New-York, Inc. 2000.

[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New-York, Inc. 1983.

[12] G. Pianigiani, On the Fundamental Theory of Multivalued Differential Equations, J. Differential Equations 25 (1) (1977), 30-38.

[13] A. Plis, On Trajectories of Orientor Fields, Bull. Acad. Polon. Sci, Ser. Math. 13 (8) (1965) 571-573.

[14] A.A. Tolstonogov, Differential Inclusions in Banach Space, Kluwer Acad. Publishers, Dordrecht 2000.