Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2006_26_1_a8, author = {Benedetti, Irene and Panasenko, Elena}, title = {Representation of the set of mild solutions to the relaxed semilinear differential inclusion}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {143--158}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1147.34044}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/} }
TY - JOUR AU - Benedetti, Irene AU - Panasenko, Elena TI - Representation of the set of mild solutions to the relaxed semilinear differential inclusion JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2006 SP - 143 EP - 158 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/ LA - en ID - DMDICO_2006_26_1_a8 ER -
%0 Journal Article %A Benedetti, Irene %A Panasenko, Elena %T Representation of the set of mild solutions to the relaxed semilinear differential inclusion %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2006 %P 143-158 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/ %G en %F DMDICO_2006_26_1_a8
Benedetti, Irene; Panasenko, Elena. Representation of the set of mild solutions to the relaxed semilinear differential inclusion. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 143-158. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a8/
[1] J.-P. Aubin and A. Cellina, Differential Inclusions, Grundlehren Math. Wiss. Vol. 264, Springer-Verlag, Berlin, Heidelberg 1984.
[2] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston-Basel-Berlin 1990.
[3] Yu. Borisovich, B. Gelman, A. Myshkis and V. Obukhovskii, Introduction to the Theory of Multivalued Maps and Differential Inclusions, Editorial URSS, Moscow 2005 (in Russian).
[4] A. Bulgakov, A. Efremov and E. Panasenko, Ordinary Differential Inclusions with Internal and External Perturbations, Differentsial'nye Uravneniya 36 (12) (2000), 1587-1598, translated in Differential Equations 36 (12) (2000), 1741-1753.
[5] K. Deimling, Multivalued Differential Equations, De Gruyter Sr. Nonlinear Anal. Appl. 1, Walter de Gruyter, Berlin-New York 1992.
[6] A.F. Filippov, Differential Equations with Discontinuous Righthand Side, Dordrecht, Kluwer 1988.
[7] H. Frankowska, A Priori Estimanes for Operational Differential Inclusions, J. Differential Equations 84 (1990), 100-128.
[8] A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems, North Holland, Amsterdam 1979.
[9] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Sr. Nonlinear Anal. Appl. 7, Walter de Gruyter, Berlin-New York 2001.
[10] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New-York, Inc. 2000.
[11] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New-York, Inc. 1983.
[12] G. Pianigiani, On the Fundamental Theory of Multivalued Differential Equations, J. Differential Equations 25 (1) (1977), 30-38.
[13] A. Plis, On Trajectories of Orientor Fields, Bull. Acad. Polon. Sci, Ser. Math. 13 (8) (1965) 571-573.
[14] A.A. Tolstonogov, Differential Inclusions in Banach Space, Kluwer Acad. Publishers, Dordrecht 2000.